My dataset has m
features and n
data points. Let w
be a vector (to be estimated). I'm trying to implement gradient descent with stochastic update method. My minimizing function is least mean square
.
The update algorithm is shown below:
for i = 1 ... n data:
for t = 1 ... m features:
w_t = w_t - alpha * (<w>.<x_i> - <y_i>) * x_t
where <x>
is a raw vector of m
features, <y>
is a column vector of true labels, and alpha
is a constant.
My questions:
Now according to wiki, I don't need to go through all data points and I can stop when error is small enough. Is it true?
I don't understand what should be the stopping criterion here. If anyone can help with this that would be great.
With this formula - which I used in for loop
- is it correct? I believe (<w>.<x_i> - <y_i>) * x_t
is my ∆Q(w)
.
Now according to wiki, I don't need to go through all data points and I can stop when error is small enough. Is it true?
This is especially true when you have a really huge training set and going through all the data points is so expensive. Then, you would check the convergence criterion after K stochastic updates (i.e. after processing K training examples). While it's possible, it doesn't make much sense to do this with a small training set. Another thing people do is randomizing the order in which training examples are processed to avoid having too many correlated examples in a raw which may result in "fake" convergence.
I don't understand what should be the stopping criterion here. If anyone can help with this that would be great.
There are a few options. I recommend trying as many of them and deciding based on empirical results.
With this formula - which I used in for loop - is it correct? I believe (w.x_i - y_i) * x_t is my ∆Q(w).
It should be 2 * (w.x_i - y_i) * x_t but it's not a big deal given that you're multiplying by the learning rate alpha anyway.