How do I make a U-matrix?

Spacey picture Spacey · Nov 29, 2012 · Viewed 10.4k times · Source

How exactly is an U-matrix constructed in order to visualise a self-organizing-map? More specifically, suppose that I have an output grid of 3x3 nodes (that have already been trained), how do I construct a U-matrix from this? You can e.g. assume that the neurons (and inputs) have dimension 4.

I have found several resources on the web, but they are not clear or they are contradictory. For example, the original paper is full of typos.

Answer

pater picture pater · Nov 30, 2012

A U-matrix is a visual representation of the distances between neurons in the input data dimension space. Namely you calculate the distance between adjacent neurons, using their trained vector. If your input dimension was 4, then each neuron in the trained map also corresponds to a 4-dimensional vector. Let's say you have a 3x3 hexagonal map.

map lattice

The U-matrix will be a 5x5 matrix with interpolated elements for each connection between two neurons like this

u-mat lattice

The {x,y} elements are the distance between neuron x and y, and the values in {x} elements are the mean of the surrounding values. For example, {4,5} = distance(4,5) and {4} = mean({1,4}, {2,4}, {4,5}, {4,7}). For the calculation of the distance you use the trained 4-dimensional vector of each neuron and the distance formula that you used for the training of the map (usually Euclidian distance). So, the values of the U-matrix are only numbers (not vectors). Then you can assign a light gray colour to the largest of these values and a dark gray to the smallest and the other values to corresponding shades of gray. You can use these colours to paint the cells of the U-matrix and have a visualized representation of the distances between neurons.

Have also a look at this web article.