get cosine similarity between two documents in lucene

maiky picture maiky · Dec 4, 2009 · Viewed 23.7k times · Source

i have built an index in Lucene. I want without specifying a query, just to get a score (cosine similarity or another distance?) between two documents in the index.

For example i am getting from previously opened IndexReader ir the documents with ids 2 and 4. Document d1 = ir.document(2); Document d2 = ir.document(4);

How can i get the cosine similarity between these two documents?

Thank you

Answer

Mark Butler picture Mark Butler · Jan 21, 2013

As Julia points out Sujit Pal's example is very useful but the Lucene 4 API has substantial changes. Here is a version rewritten for Lucene 4.

import java.io.IOException;
import java.util.*;

import org.apache.commons.math3.linear.*;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.core.SimpleAnalyzer;
import org.apache.lucene.document.*;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.index.*;
import org.apache.lucene.store.*;
import org.apache.lucene.util.*;

public class CosineDocumentSimilarity {

    public static final String CONTENT = "Content";

    private final Set<String> terms = new HashSet<>();
    private final RealVector v1;
    private final RealVector v2;

    CosineDocumentSimilarity(String s1, String s2) throws IOException {
        Directory directory = createIndex(s1, s2);
        IndexReader reader = DirectoryReader.open(directory);
        Map<String, Integer> f1 = getTermFrequencies(reader, 0);
        Map<String, Integer> f2 = getTermFrequencies(reader, 1);
        reader.close();
        v1 = toRealVector(f1);
        v2 = toRealVector(f2);
    }

    Directory createIndex(String s1, String s2) throws IOException {
        Directory directory = new RAMDirectory();
        Analyzer analyzer = new SimpleAnalyzer(Version.LUCENE_CURRENT);
        IndexWriterConfig iwc = new IndexWriterConfig(Version.LUCENE_CURRENT,
                analyzer);
        IndexWriter writer = new IndexWriter(directory, iwc);
        addDocument(writer, s1);
        addDocument(writer, s2);
        writer.close();
        return directory;
    }

    /* Indexed, tokenized, stored. */
    public static final FieldType TYPE_STORED = new FieldType();

    static {
        TYPE_STORED.setIndexed(true);
        TYPE_STORED.setTokenized(true);
        TYPE_STORED.setStored(true);
        TYPE_STORED.setStoreTermVectors(true);
        TYPE_STORED.setStoreTermVectorPositions(true);
        TYPE_STORED.freeze();
    }

    void addDocument(IndexWriter writer, String content) throws IOException {
        Document doc = new Document();
        Field field = new Field(CONTENT, content, TYPE_STORED);
        doc.add(field);
        writer.addDocument(doc);
    }

    double getCosineSimilarity() {
        return (v1.dotProduct(v2)) / (v1.getNorm() * v2.getNorm());
    }

    public static double getCosineSimilarity(String s1, String s2)
            throws IOException {
        return new CosineDocumentSimilarity(s1, s2).getCosineSimilarity();
    }

    Map<String, Integer> getTermFrequencies(IndexReader reader, int docId)
            throws IOException {
        Terms vector = reader.getTermVector(docId, CONTENT);
        TermsEnum termsEnum = null;
        termsEnum = vector.iterator(termsEnum);
        Map<String, Integer> frequencies = new HashMap<>();
        BytesRef text = null;
        while ((text = termsEnum.next()) != null) {
            String term = text.utf8ToString();
            int freq = (int) termsEnum.totalTermFreq();
            frequencies.put(term, freq);
            terms.add(term);
        }
        return frequencies;
    }

    RealVector toRealVector(Map<String, Integer> map) {
        RealVector vector = new ArrayRealVector(terms.size());
        int i = 0;
        for (String term : terms) {
            int value = map.containsKey(term) ? map.get(term) : 0;
            vector.setEntry(i++, value);
        }
        return (RealVector) vector.mapDivide(vector.getL1Norm());
    }
}