I've written a server that accepts a socket connection on a secondary port for the purposes of streaming debugging information that normally goes to stderr
. This second port --an error serving port-- is only intended to have one connection at a time, which, is convenient, because it allows to me redirect stderr
using a dup2(2)
call. (See Can I redirect a parent process's stderr to a socket file descriptor on a forked process?).
The following code is nearly satisfactory in every regard. When a client logs into the port, the stderr
stream is directed to the socket. When another client logs in, the stream is redirected again, and the first client stops receiving: entirely satisfactory.
Where it falls short in the design is when the client closes the connection, the server crashes because it is trying to write()
to a socket that is closed.
I've got a rudimentary signal handler for the normal child processes, but I'm not sure how to handle the specific signal from the parent process when the error socket closes.
How can I trap the signal (in the parent) that the connection on the ERR_PORT_NUM has closed and have the signal handler reopen (or dup
) stderr back to /dev/null
for the next awaiting error client?
Also, what should I do with an original error client connection when a second connects? Currently the first client is left dangling. Even a non-graceful shut-down of the first connection is acceptable.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <fcntl.h>
#include <errno.h>
#include <pwd.h>
#include <signal.h>
#include <netinet/in.h>
#include <sys/mman.h>
#define PORT_NUM 12345
#define ERR_PORT_NUM 54321
static void child_handler(int signum)
{
switch (signum) {
case SIGALRM:
exit(EXIT_FAILURE);
break;
case SIGUSR1:
exit(EXIT_SUCCESS);
break;
case SIGCHLD:
exit(EXIT_FAILURE);
break;
}
}
static void daemonize(void)
{
/* Trap signals that we expect to recieve */
signal(SIGUSR1, child_handler);
signal(SIGALRM, child_handler);
signal(SIGCHLD, SIG_IGN); /* A child process dies */
signal(SIGTSTP, SIG_IGN); /* Various TTY signals */
signal(SIGTTOU, SIG_IGN);
signal(SIGTTIN, SIG_IGN);
signal(SIGHUP, SIG_IGN); /* Ignore hangup signal */
signal(SIGTERM, SIG_DFL); /* Die on SIGTERM */
freopen("/dev/null", "r", stdin);
freopen("/dev/null", "w", stdout);
freopen("/dev/null", "w", stderr);
}
static void server_work(void)
{
int sockfd, err_sockfd;
socklen_t clilen;
struct sockaddr_in serv_addr, cli_addr, err_serv_addr, err_cli_addr;
struct timeval tv = { 0 };
int new_stderr;
sockfd = socket(AF_INET, SOCK_STREAM, 0);
err_sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0 || err_sockfd < 0)
return;
memset((char *) &serv_addr, '\0', sizeof(serv_addr));
memset((char *) &err_serv_addr, '\0', sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv_addr.sin_port = htons(PORT_NUM);
err_serv_addr.sin_family = AF_INET;
err_serv_addr.sin_addr.s_addr = INADDR_ANY;
err_serv_addr.sin_port = htons(ERR_PORT_NUM);
if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr))
< 0)
return;
if (bind
(err_sockfd, (struct sockaddr *) &err_serv_addr,
sizeof(err_serv_addr)) < 0)
return;
listen(sockfd, 5);
listen(err_sockfd, 5);
clilen = sizeof(cli_addr);
while (1) {
int maxfd;
fd_set read_sockets_set;
FD_ZERO(&read_sockets_set);
FD_SET(sockfd, &read_sockets_set);
FD_SET(err_sockfd, &read_sockets_set);
maxfd = (err_sockfd > sockfd) ? err_sockfd : sockfd;
if (select(maxfd + 1, &read_sockets_set, NULL, NULL, NULL) < 0) {
break;
}
if (FD_ISSET(sockfd, &read_sockets_set)) {
/* Typical process fork(2) and such ... not gremaine to the question. */
}
if (FD_ISSET(err_sockfd, &read_sockets_set)) {
new_stderr =
accept(err_sockfd, (struct sockaddr *) &err_cli_addr,
&clilen);
dup2(new_stderr, STDERR_FILENO);
}
}
close(sockfd);
close(err_sockfd);
return;
}
int main(int argc, char *argv[])
{
daemonize(); /* greatly abbreviated for question */
server_work();
return 0;
}
You could simply ignore SIGPIPE. It's a useless, annoying signal.
signal(SIGPIPE, SIG_IGN);
If you ignore it then your program will instead receive an EPIPE error code from the failed write() call. This lets you handle the I/O error at a sensible place in your code rather than in some global signal handler.
EPIPE
fd is connected to a pipe or socket whose reading end is closed. When this happens the writing process will also receive a SIGPIPE signal. (Thus, the write return value is seen only if the program catches, blocks or ignores this signal.)