In drivers I often see these three types of init functions being used.
module_init()
core_initcall()
early_initcall()
They determine the initialization order of built-in modules. Drivers will use device_initcall
(or module_init
; see below) most of the time. Early initialization (early_initcall
) is normally used by architecture-specific code to initialize hardware subsystems (power management, DMAs, etc.) before any real driver gets initialized.
Look at init/main.c
. After a few architecture-specific initialization done by code in arch/<arch>/boot
and arch/<arch>/kernel
, the portable start_kernel
function will be called. Eventually, in the same file, do_basic_setup
is called:
/*
* Ok, the machine is now initialized. None of the devices
* have been touched yet, but the CPU subsystem is up and
* running, and memory and process management works.
*
* Now we can finally start doing some real work..
*/
static void __init do_basic_setup(void)
{
cpuset_init_smp();
usermodehelper_init();
shmem_init();
driver_init();
init_irq_proc();
do_ctors();
usermodehelper_enable();
do_initcalls();
}
which ends with a call to do_initcalls
:
static initcall_t *initcall_levels[] __initdata = {
__initcall0_start,
__initcall1_start,
__initcall2_start,
__initcall3_start,
__initcall4_start,
__initcall5_start,
__initcall6_start,
__initcall7_start,
__initcall_end,
};
/* Keep these in sync with initcalls in include/linux/init.h */
static char *initcall_level_names[] __initdata = {
"early",
"core",
"postcore",
"arch",
"subsys",
"fs",
"device",
"late",
};
static void __init do_initcall_level(int level)
{
extern const struct kernel_param __start___param[], __stop___param[];
initcall_t *fn;
strcpy(static_command_line, saved_command_line);
parse_args(initcall_level_names[level],
static_command_line, __start___param,
__stop___param - __start___param,
level, level,
&repair_env_string);
for (fn = initcall_levels[level]; fn < initcall_levels[level+1]; fn++)
do_one_initcall(*fn);
}
static void __init do_initcalls(void)
{
int level;
for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++)
do_initcall_level(level);
}
You can see the names above with their associated index: early
is 0, core
is 1, etc. Each of those __initcall*_start
entries point to an array of function pointers which get called one after the other. Those function pointers are the actual modules and built-in initialization functions, the ones you specify with module_init
, early_initcall
, etc.
What determines which function pointer gets into which __initcall*_start
array? The linker does this, using hints from the module_init
and *_initcall
macros. Those macros, for built-in modules, assign the function pointers to a specific ELF section.
module_init
Considering a built-in module (configured with y
in .config
), module_init
simply expands like this (include/linux/init.h
):
#define module_init(x) __initcall(x);
and then we follow this:
#define __initcall(fn) device_initcall(fn)
#define device_initcall(fn) __define_initcall(fn, 6)
So, now, module_init(my_func)
means __define_initcall(my_func, 6)
. This is _define_initcall
:
#define __define_initcall(fn, id) \
static initcall_t __initcall_##fn##id __used \
__attribute__((__section__(".initcall" #id ".init"))) = fn
which means, so far, we have:
static initcall_t __initcall_my_func6 __used
__attribute__((__section__(".initcall6.init"))) = my_func;
Wow, lots of GCC stuff, but it only means that a new symbol is created, __initcall_my_func6
, that's put in the ELF section named .initcall6.init
, and as you can see, points to the specified function (my_func
). Adding all the functions to this section eventually creates the complete array of function pointers, all stored within the .initcall6.init
ELF section.
Look again at this chunk:
for (fn = initcall_levels[level]; fn < initcall_levels[level+1]; fn++)
do_one_initcall(*fn);
Let's take level 6, which represents all the built-in modules initialized with module_init
. It starts from __initcall6_start
, its value being the address of the first function pointer registered within the .initcall6.init
section, and ends at __initcall7_start
(excluded), incrementing each time with the size of *fn
(which is an initcall_t
, which is a void*
, which is 32-bit or 64-bit depending on the architecture).
do_one_initcall
will simply call the function pointed to by the current entry.
Within a specific initialization section, what determines why an initialization function is called before another is simply the order of the files within the Makefiles since the linker will concatenate the __initcall_*
symbols one after the other in their respective ELF init. sections.
This fact is actually used in the kernel, e.g. with device drivers (drivers/Makefile
):
# GPIO must come after pinctrl as gpios may need to mux pins etc
obj-y += pinctrl/
obj-y += gpio/
tl;dr: the Linux kernel initialization mechanism is really beautiful, albeit highlight GCC-dependent.