Has anyone implemented a flood fill algorithm in javascript for use with HTML Canvas?
My requirements are simple: flood with a single color starting from a single point, where the boundary color is any color greater than a certain delta of the color at the specified point.
var r1, r2; // red values
var g1, g2; // green values
var b1, b2; // blue values
var actualColorDelta = Math.sqrt((r1 - r2)*(r1 - r2) + (g1 - g2)*(g1 - g2) + (b1 - b2)*(b1 - b2))
function floodFill(canvas, x, y, fillColor, borderColorDelta) {
...
}
Update:
I wrote my own implementation of flood fill, which follows. It is slow, but accurate. About 37% of the time is taken up in two low-level array functions that are part of the prototype framework. They are called by push and pop, I presume. Most of the rest of the time is spent in the main loop.
var ImageProcessing;
ImageProcessing = {
/* Convert HTML color (e.g. "#rrggbb" or "#rrggbbaa") to object with properties r, g, b, a.
* If no alpha value is given, 255 (0xff) will be assumed.
*/
toRGB: function (color) {
var r, g, b, a, html;
html = color;
// Parse out the RGBA values from the HTML Code
if (html.substring(0, 1) === "#")
{
html = html.substring(1);
}
if (html.length === 3 || html.length === 4)
{
r = html.substring(0, 1);
r = r + r;
g = html.substring(1, 2);
g = g + g;
b = html.substring(2, 3);
b = b + b;
if (html.length === 4) {
a = html.substring(3, 4);
a = a + a;
}
else {
a = "ff";
}
}
else if (html.length === 6 || html.length === 8)
{
r = html.substring(0, 2);
g = html.substring(2, 4);
b = html.substring(4, 6);
a = html.length === 6 ? "ff" : html.substring(6, 8);
}
// Convert from Hex (Hexidecimal) to Decimal
r = parseInt(r, 16);
g = parseInt(g, 16);
b = parseInt(b, 16);
a = parseInt(a, 16);
return {r: r, g: g, b: b, a: a};
},
/* Get the color at the given x,y location from the pixels array, assuming the array has a width and height as given.
* This interprets the 1-D array as a 2-D array.
*
* If useColor is defined, its values will be set. This saves on object creation.
*/
getColor: function (pixels, x, y, width, height, useColor) {
var redIndex = y * width * 4 + x * 4;
if (useColor === undefined) {
useColor = { r: pixels[redIndex], g: pixels[redIndex + 1], b: pixels[redIndex + 2], a: pixels[redIndex + 3] };
}
else {
useColor.r = pixels[redIndex];
useColor.g = pixels[redIndex + 1]
useColor.b = pixels[redIndex + 2];
useColor.a = pixels[redIndex + 3];
}
return useColor;
},
setColor: function (pixels, x, y, width, height, color) {
var redIndex = y * width * 4 + x * 4;
pixels[redIndex] = color.r;
pixels[redIndex + 1] = color.g,
pixels[redIndex + 2] = color.b;
pixels[redIndex + 3] = color.a;
},
/*
* fill: Flood a canvas with the given fill color.
*
* Returns a rectangle { x, y, width, height } that defines the maximum extent of the pixels that were changed.
*
* canvas .................... Canvas to modify.
* fillColor ................. RGBA Color to fill with.
* This may be a string ("#rrggbbaa") or an object of the form { r: red, g: green, b: blue, a: alpha }.
* x, y ...................... Coordinates of seed point to start flooding.
* bounds .................... Restrict flooding to this rectangular region of canvas.
* This object has these attributes: { x, y, width, height }.
* If undefined or null, use the whole of the canvas.
* stopFunction .............. Function that decides if a pixel is a boundary that should cause
* flooding to stop. If omitted, any pixel that differs from seedColor
* will cause flooding to stop. seedColor is the color under the seed point (x,y).
* Parameters: stopFunction(fillColor, seedColor, pixelColor).
* Returns true if flooding shoud stop.
* The colors are objects of the form { r: red, g: green, b: blue, a: alpha }
*/
fill: function (canvas, fillColor, x, y, bounds, stopFunction) {
// Supply default values if necessary.
var ctx, minChangedX, minChangedY, maxChangedX, maxChangedY, wasTested, shouldTest, imageData, pixels, currentX, currentY, currentColor, currentIndex, seedColor, tryX, tryY, tryIndex, boundsWidth, boundsHeight, pixelStart, fillRed, fillGreen, fillBlue, fillAlpha;
if (Object.isString(fillColor)) {
fillColor = ImageProcessing.toRGB(fillColor);
}
x = Math.round(x);
y = Math.round(y);
if (bounds === null || bounds === undefined) {
bounds = { x: 0, y: 0, width: canvas.width, height: canvas.height };
}
else {
bounds = { x: Math.round(bounds.x), y: Math.round(bounds.y), width: Math.round(bounds.y), height: Math.round(bounds.height) };
}
if (stopFunction === null || stopFunction === undefined) {
stopFunction = new function (fillColor, seedColor, pixelColor) {
return pixelColor.r != seedColor.r || pixelColor.g != seedColor.g || pixelColor.b != seedColor.b || pixelColor.a != seedColor.a;
}
}
minChangedX = maxChangedX = x - bounds.x;
minChangedY = maxChangedY = y - bounds.y;
boundsWidth = bounds.width;
boundsHeight = bounds.height;
// Initialize wasTested to false. As we check each pixel to decide if it should be painted with the new color,
// we will mark it with a true value at wasTested[row = y][column = x];
wasTested = new Array(boundsHeight * boundsWidth);
/*
$R(0, bounds.height - 1).each(function (row) {
var subArray = new Array(bounds.width);
wasTested[row] = subArray;
});
*/
// Start with a single point that we know we should test: (x, y).
// Convert (x,y) to image data coordinates by subtracting the bounds' origin.
currentX = x - bounds.x;
currentY = y - bounds.y;
currentIndex = currentY * boundsWidth + currentX;
shouldTest = [ currentIndex ];
ctx = canvas.getContext("2d");
//imageData = ctx.getImageData(bounds.x, bounds.y, bounds.width, bounds.height);
imageData = ImageProcessing.getImageData(ctx, bounds.x, bounds.y, bounds.width, bounds.height);
pixels = imageData.data;
seedColor = ImageProcessing.getColor(pixels, currentX, currentY, boundsWidth, boundsHeight);
currentColor = { r: 0, g: 0, b: 0, a: 1 };
fillRed = fillColor.r;
fillGreen = fillColor.g;
fillBlue = fillColor.b;
fillAlpha = fillColor.a;
while (shouldTest.length > 0) {
currentIndex = shouldTest.pop();
currentX = currentIndex % boundsWidth;
currentY = (currentIndex - currentX) / boundsWidth;
if (! wasTested[currentIndex]) {
wasTested[currentIndex] = true;
//currentColor = ImageProcessing.getColor(pixels, currentX, currentY, boundsWidth, boundsHeight, currentColor);
// Inline getColor for performance.
pixelStart = currentIndex * 4;
currentColor.r = pixels[pixelStart];
currentColor.g = pixels[pixelStart + 1]
currentColor.b = pixels[pixelStart + 2];
currentColor.a = pixels[pixelStart + 3];
if (! stopFunction(fillColor, seedColor, currentColor)) {
// Color the pixel with the fill color.
//ImageProcessing.setColor(pixels, currentX, currentY, boundsWidth, boundsHeight, fillColor);
// Inline setColor for performance
pixels[pixelStart] = fillRed;
pixels[pixelStart + 1] = fillGreen;
pixels[pixelStart + 2] = fillBlue;
pixels[pixelStart + 3] = fillAlpha;
if (minChangedX < currentX) { minChangedX = currentX; }
else if (maxChangedX > currentX) { maxChangedX = currentX; }
if (minChangedY < currentY) { minChangedY = currentY; }
else if (maxChangedY > currentY) { maxChangedY = currentY; }
// Add the adjacent four pixels to the list to be tested, unless they have already been tested.
tryX = currentX - 1;
tryY = currentY;
tryIndex = tryY * boundsWidth + tryX;
if (tryX >= 0 && ! wasTested[tryIndex]) {
shouldTest.push(tryIndex);
}
tryX = currentX;
tryY = currentY + 1;
tryIndex = tryY * boundsWidth + tryX;
if (tryY < boundsHeight && ! wasTested[tryIndex]) {
shouldTest.push(tryIndex);
}
tryX = currentX + 1;
tryY = currentY;
tryIndex = tryY * boundsWidth + tryX;
if (tryX < boundsWidth && ! wasTested[tryIndex]) {
shouldTest.push(tryIndex);
}
tryX = currentX;
tryY = currentY - 1;
tryIndex = tryY * boundsWidth + tryX;
if (tryY >= 0 && ! wasTested[tryIndex]) {
shouldTest.push(tryIndex);
}
}
}
}
//ctx.putImageData(imageData, bounds.x, bounds.y);
ImageProcessing.putImageData(ctx, imageData, bounds.x, bounds.y);
return { x: minChangedX + bounds.x, y: minChangedY + bounds.y, width: maxChangedX - minChangedX + 1, height: maxChangedY - minChangedY + 1 };
},
getImageData: function (ctx, x, y, w, h) {
return ctx.getImageData(x, y, w, h);
},
putImageData: function (ctx, data, x, y) {
ctx.putImageData(data, x, y);
}
};
BTW, when I call this, I use a custom stopFunction:
stopFill : function (fillColor, seedColor, pixelColor) {
// Ignore alpha difference for now.
return Math.abs(pixelColor.r - seedColor.r) > this.colorTolerance || Math.abs(pixelColor.g - seedColor.g) > this.colorTolerance || Math.abs(pixelColor.b - seedColor.b) > this.colorTolerance;
},
If anyone can see a way to improve performance of this code, I would appreciate it. The basic idea is: 1) Seed color is the initial color at the point to start flooding. 2) Try four adjacent points: up, right, down and left one pixel. 3) If point is out of range or has been visited already, skip it. 4) Otherwise push point onto to the stack of interesting points. 5) Pop the next interesting point off the stack. 6) If the color at that point is a stop color (as defined in the stopFunction) then stop processing that point and skip to step 5. 7) Otherwise, skip to step 2. 8) When there are no more interesting points to visit, stop looping.
Remembering that a point has been visited requires an array with the same number of elements as there are pixels.
To create a flood fill you need to be able to look at the pixels that are there already and check they aren't the color you started with so something like this.
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, [255, 0, 0, 255]);
function getPixel(imageData, x, y) {
if (x < 0 || y < 0 || x >= imageData.width || y >= imageData.height) {
return [-1, -1, -1, -1]; // impossible color
} else {
const offset = (y * imageData.width + x) * 4;
return imageData.data.slice(offset, offset + 4);
}
}
function setPixel(imageData, x, y, color) {
const offset = (y * imageData.width + x) * 4;
imageData.data[offset + 0] = color[0];
imageData.data[offset + 1] = color[1];
imageData.data[offset + 2] = color[2];
imageData.data[offset + 3] = color[0];
}
function colorsMatch(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
}
function floodFill(ctx, x, y, fillColor) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// get the color we're filling
const targetColor = getPixel(imageData, x, y);
// check we are actually filling a different color
if (!colorsMatch(targetColor, fillColor)) {
fillPixel(imageData, x, y, targetColor, fillColor);
// put the data back
ctx.putImageData(imageData, 0, 0);
}
}
function fillPixel(imageData, x, y, targetColor, fillColor) {
const currentColor = getPixel(imageData, x, y);
if (colorsMatch(currentColor, targetColor)) {
setPixel(imageData, x, y, fillColor);
fillPixel(imageData, x + 1, y, targetColor, fillColor);
fillPixel(imageData, x - 1, y, targetColor, fillColor);
fillPixel(imageData, x, y + 1, targetColor, fillColor);
fillPixel(imageData, x, y - 1, targetColor, fillColor);
}
}
<canvas></canvas>
There's at least 2 problems with this code though.
It's deeply recursive.
So you might run out of stack space
It's slow.
No idea if it's too slow but JavaScript in the browser is mostly single threaded so while this code is running the browser is frozen. For a large canvas that frozen time might make the page really slow and if it's frozen too long the browser will ask if the user wants to kill the page.
The solution to running out of stack space is to implement our own stack. For example instead of recursively calling fillPixel
we could keep an array of positions we want to look at. We'd add the 4 positions to that array and then pop things off the array until it's empty
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, [255, 0, 0, 255]);
function getPixel(imageData, x, y) {
if (x < 0 || y < 0 || x >= imageData.width || y >= imageData.height) {
return [-1, -1, -1, -1]; // impossible color
} else {
const offset = (y * imageData.width + x) * 4;
return imageData.data.slice(offset, offset + 4);
}
}
function setPixel(imageData, x, y, color) {
const offset = (y * imageData.width + x) * 4;
imageData.data[offset + 0] = color[0];
imageData.data[offset + 1] = color[1];
imageData.data[offset + 2] = color[2];
imageData.data[offset + 3] = color[0];
}
function colorsMatch(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
}
function floodFill(ctx, x, y, fillColor) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// get the color we're filling
const targetColor = getPixel(imageData, x, y);
// check we are actually filling a different color
if (!colorsMatch(targetColor, fillColor)) {
const pixelsToCheck = [x, y];
while (pixelsToCheck.length > 0) {
const y = pixelsToCheck.pop();
const x = pixelsToCheck.pop();
const currentColor = getPixel(imageData, x, y);
if (colorsMatch(currentColor, targetColor)) {
setPixel(imageData, x, y, fillColor);
pixelsToCheck.push(x + 1, y);
pixelsToCheck.push(x - 1, y);
pixelsToCheck.push(x, y + 1);
pixelsToCheck.push(x, y - 1);
}
}
// put the data back
ctx.putImageData(imageData, 0, 0);
}
}
<canvas></canvas>
The solution to it being too slow is either to make it run a little at a time OR to move it to a worker. I think that's a little too much to show in the same answer though here's an example.
I tested the code above on a 4096x4096 canvas and it took 16 seconds to fill a blank canvas on my machine so yes it's arguably too slow but putting it in a worker brings new problems which is that the result will be asynchronous so even though the browser wouldn't freeze you'd probably want to prevent the user from doing something until it finishes.
Another issue is you'll see the lines are antialiased and so filling with a solid color fills close the the line but not all the way up to it. To fix that you can change colorsMatch
to check for close enough but then you have a new problem that if targetColor
and fillColor
are also close enough it will keep trying to fill itself. You could solve that by making another array, one byte or one bit per pixel to track places you've ready checked.
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, [255, 0, 0, 255], 128);
function getPixel(imageData, x, y) {
if (x < 0 || y < 0 || x >= imageData.width || y >= imageData.height) {
return [-1, -1, -1, -1]; // impossible color
} else {
const offset = (y * imageData.width + x) * 4;
return imageData.data.slice(offset, offset + 4);
}
}
function setPixel(imageData, x, y, color) {
const offset = (y * imageData.width + x) * 4;
imageData.data[offset + 0] = color[0];
imageData.data[offset + 1] = color[1];
imageData.data[offset + 2] = color[2];
imageData.data[offset + 3] = color[0];
}
function colorsMatch(a, b, rangeSq) {
const dr = a[0] - b[0];
const dg = a[1] - b[1];
const db = a[2] - b[2];
const da = a[3] - b[3];
return dr * dr + dg * dg + db * db + da * da < rangeSq;
}
function floodFill(ctx, x, y, fillColor, range = 1) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// flags for if we visited a pixel already
const visited = new Uint8Array(imageData.width, imageData.height);
// get the color we're filling
const targetColor = getPixel(imageData, x, y);
// check we are actually filling a different color
if (!colorsMatch(targetColor, fillColor)) {
const rangeSq = range * range;
const pixelsToCheck = [x, y];
while (pixelsToCheck.length > 0) {
const y = pixelsToCheck.pop();
const x = pixelsToCheck.pop();
const currentColor = getPixel(imageData, x, y);
if (!visited[y * imageData.width + x] &&
colorsMatch(currentColor, targetColor, rangeSq)) {
setPixel(imageData, x, y, fillColor);
visited[y * imageData.width + x] = 1; // mark we were here already
pixelsToCheck.push(x + 1, y);
pixelsToCheck.push(x - 1, y);
pixelsToCheck.push(x, y + 1);
pixelsToCheck.push(x, y - 1);
}
}
// put the data back
ctx.putImageData(imageData, 0, 0);
}
}
<canvas></canvas>
Note that this version of colorsMatch
is kind of naive. It might be better to convert to HSV or something or maybe you want to weight by alpha. I don't know what a good metric is for matching colors.
Another way to speed things up is of course to just optimize the code. Kaiido pointed out an obvious speedup which is to use a Uint32Array
view on the pixels. That way looking up a pixel and setting a pixel there's just one 32bit value to read or write. Just that change makes it about 4x faster. It still takes 4 seconds to fill a 4096x4096 canvas though. There might be other optimizations like instead of calling getPixels
make that inline but don't push a new pixel on our list of pixels to check if they are out of range. It might be 10% speed up (no idea) but won't make it fast enough to be an interactive speed.
There are other speedups like checking across a row at a time since rows are cache friendly and you can compute the offset to a row once and use that while checking the entire row whereas now for every pixel we have to compute the offset multiple times.
Those will complicate the algorithm so they are best left for you to figure out.
Let me also add, given the answer above freezes the browser while the fill is happening and that on a larger canvas that freeze could be too long, you can easily make the algorithm span over time using ES6 async/await. You need to choose how much work to give each segment of time. Choose too small and it will take a long time to fill. Choose too large and you'll get jank as the browser freezes.
Here's an example. Set ticksPerUpdate
to speed up or slow down the fill rate
const ctx = document.querySelector("canvas").getContext("2d");
ctx.beginPath();
ctx.moveTo(20, 20);
ctx.lineTo(250, 70);
ctx.lineTo(270, 120);
ctx.lineTo(170, 140);
ctx.lineTo(100, 145);
ctx.lineTo(110, 105);
ctx.lineTo(130, 125);
ctx.lineTo(190, 80);
ctx.lineTo(100, 60);
ctx.lineTo(50, 130);
ctx.lineTo(20, 20);
ctx.stroke();
floodFill(ctx, 40, 50, 0xFF0000FF);
function getPixel(pixelData, x, y) {
if (x < 0 || y < 0 || x >= pixelData.width || y >= pixelData.height) {
return -1; // impossible color
} else {
return pixelData.data[y * pixelData.width + x];
}
}
async function floodFill(ctx, x, y, fillColor) {
// read the pixels in the canvas
const imageData = ctx.getImageData(0, 0, ctx.canvas.width, ctx.canvas.height);
// make a Uint32Array view on the pixels so we can manipulate pixels
// one 32bit value at a time instead of as 4 bytes per pixel
const pixelData = {
width: imageData.width,
height: imageData.height,
data: new Uint32Array(imageData.data.buffer),
};
// get the color we're filling
const targetColor = getPixel(pixelData, x, y);
// check we are actually filling a different color
if (targetColor !== fillColor) {
const ticksPerUpdate = 50;
let tickCount = 0;
const pixelsToCheck = [x, y];
while (pixelsToCheck.length > 0) {
const y = pixelsToCheck.pop();
const x = pixelsToCheck.pop();
const currentColor = getPixel(pixelData, x, y);
if (currentColor === targetColor) {
pixelData.data[y * pixelData.width + x] = fillColor;
// put the data back
ctx.putImageData(imageData, 0, 0);
++tickCount;
if (tickCount % ticksPerUpdate === 0) {
await wait();
}
pixelsToCheck.push(x + 1, y);
pixelsToCheck.push(x - 1, y);
pixelsToCheck.push(x, y + 1);
pixelsToCheck.push(x, y - 1);
}
}
}
}
function wait(delay = 0) {
return new Promise((resolve) => {
setTimeout(resolve, delay);
});
}
<canvas></canvas>