Due to the implementation of Java generics, you can't have code like this:
public class GenSet<E> {
private E a[];
public GenSet() {
a = new E[INITIAL_ARRAY_LENGTH]; // error: generic array creation
}
}
How can I implement this while maintaining type safety?
I saw a solution on the Java forums that goes like this:
import java.lang.reflect.Array;
class Stack<T> {
public Stack(Class<T> clazz, int capacity) {
array = (T[])Array.newInstance(clazz, capacity);
}
private final T[] array;
}
But I really don't get what's going on.
I have to ask a question in return: is your GenSet
"checked" or "unchecked"?
What does that mean?
Checked: strong typing. GenSet
knows explicitly what type of objects it contains (i.e. its constructor was explicitly called with a Class<E>
argument, and methods will throw an exception when they are passed arguments that are not of type E
. See Collections.checkedCollection
.
-> in that case, you should write:
public class GenSet<E> {
private E[] a;
public GenSet(Class<E> c, int s) {
// Use Array native method to create array
// of a type only known at run time
@SuppressWarnings("unchecked")
final E[] a = (E[]) Array.newInstance(c, s);
this.a = a;
}
E get(int i) {
return a[i];
}
}
Unchecked: weak typing. No type checking is actually done on any of the objects passed as argument.
-> in that case, you should write
public class GenSet<E> {
private Object[] a;
public GenSet(int s) {
a = new Object[s];
}
E get(int i) {
@SuppressWarnings("unchecked")
final E e = (E) a[i];
return e;
}
}
Note that the component type of the array should be the erasure of the type parameter:
public class GenSet<E extends Foo> { // E has an upper bound of Foo
private Foo[] a; // E erases to Foo, so use Foo[]
public GenSet(int s) {
a = new Foo[s];
}
...
}
All of this results from a known, and deliberate, weakness of generics in Java: it was implemented using erasure, so "generic" classes don't know what type argument they were created with at run time, and therefore can not provide type-safety unless some explicit mechanism (type-checking) is implemented.