How to create a generic array in Java?

tatsuhirosatou picture tatsuhirosatou · Feb 9, 2009 · Viewed 838.7k times · Source

Due to the implementation of Java generics, you can't have code like this:

public class GenSet<E> {
    private E a[];

    public GenSet() {
        a = new E[INITIAL_ARRAY_LENGTH]; // error: generic array creation
    }
}

How can I implement this while maintaining type safety?

I saw a solution on the Java forums that goes like this:

import java.lang.reflect.Array;

class Stack<T> {
    public Stack(Class<T> clazz, int capacity) {
        array = (T[])Array.newInstance(clazz, capacity);
    }

    private final T[] array;
}

But I really don't get what's going on.

Answer

Varkhan picture Varkhan · Feb 9, 2009

I have to ask a question in return: is your GenSet "checked" or "unchecked"? What does that mean?

  • Checked: strong typing. GenSet knows explicitly what type of objects it contains (i.e. its constructor was explicitly called with a Class<E> argument, and methods will throw an exception when they are passed arguments that are not of type E. See Collections.checkedCollection.

    -> in that case, you should write:

    public class GenSet<E> {
    
        private E[] a;
    
        public GenSet(Class<E> c, int s) {
            // Use Array native method to create array
            // of a type only known at run time
            @SuppressWarnings("unchecked")
            final E[] a = (E[]) Array.newInstance(c, s);
            this.a = a;
        }
    
        E get(int i) {
            return a[i];
        }
    }
    
  • Unchecked: weak typing. No type checking is actually done on any of the objects passed as argument.

    -> in that case, you should write

    public class GenSet<E> {
    
        private Object[] a;
    
        public GenSet(int s) {
            a = new Object[s];
        }
    
        E get(int i) {
            @SuppressWarnings("unchecked")
            final E e = (E) a[i];
            return e;
        }
    }
    

    Note that the component type of the array should be the erasure of the type parameter:

    public class GenSet<E extends Foo> { // E has an upper bound of Foo
    
        private Foo[] a; // E erases to Foo, so use Foo[]
    
        public GenSet(int s) {
            a = new Foo[s];
        }
    
        ...
    }
    

All of this results from a known, and deliberate, weakness of generics in Java: it was implemented using erasure, so "generic" classes don't know what type argument they were created with at run time, and therefore can not provide type-safety unless some explicit mechanism (type-checking) is implemented.