Structured Streaming exception when using append output mode with watermark

Ray J picture Ray J · Aug 8, 2017 · Viewed 7.7k times · Source

Despite the fact that I'm using withWatermark(), I'm getting the following error message when I run my spark job:

Exception in thread "main" org.apache.spark.sql.AnalysisException: Append output mode not supported when there are streaming aggregations on streaming DataFrames/DataSets without watermark;;

From what I can see in the programming guide, this exactly matches the intended usage (and the example code). Does anyone know what might be wrong?

Thanks in advance!

Relevant Code (Java 8, Spark 2.2.0):

StructType logSchema = new StructType()
        .add("timestamp", TimestampType)
        .add("key", IntegerType)
        .add("val", IntegerType);

Dataset<Row> kafka = spark
        .readStream()
        .format("kafka")
        .option("kafka.bootstrap.servers", brokers)
        .option("subscribe", topics)
        .load();

Dataset<Row> parsed = kafka
        .select(from_json(col("value").cast("string"), logSchema).alias("parsed_value"))
        .select("parsed_value.*");

Dataset<Row> tenSecondCounts = parsed
        .withWatermark("timestamp", "10 minutes")
        .groupBy(
            parsed.col("key"),
            window(parsed.col("timestamp"), "1 day"))
        .count();

StreamingQuery query = tenSecondCounts
        .writeStream()
        .trigger(Trigger.ProcessingTime("10 seconds"))
        .outputMode("append")
        .format("console")
        .option("truncate", false)
        .start();

Answer

zsxwing picture zsxwing · Aug 9, 2017

The problem is in parsed.col. Replacing it with col will fix the issue. I would suggest always using col function instead of Dataset.col.

Dataset.col returns resolved column while col returns unresolved column.

parsed.withWatermark("timestamp", "10 minutes") will create a new Dataset with new columns with the same names. The watermark information is attached the timestamp column in the new Dataset, not parsed.col("timestamp"), so the columns in groupBy don't have watermark.

When you use unresolved columns, Spark will figure out the correct columns for you.