Guava: Set<K> + Function<K,V> = Map<K,V>?

polygenelubricants picture polygenelubricants · Oct 6, 2010 · Viewed 6.9k times · Source

Is there an idiomatic way to take a Set<K> and a Function<K,V>, and get a Map<K,V> live view? (i.e. the Map is backed by the Set and Function combo, and if e.g. an element is added to the Set, then the corresponding entry also exists in the Map).

(see e.g. Collections2.filter for more discussion on live views)


What if a live view is not needed? Is there something better than this:

public static <K,V> Map<K,V> newMapFrom(Set<K> keys, Function<? super K,V> f) {
    Map<K,V> map = Maps.newHashMap();
    for (K k : keys) {
        map.put(k, f.apply(k));
    }
    return map;
}

Answer

Sean Patrick Floyd picture Sean Patrick Floyd · Oct 6, 2010

Creating a Map from a Set and a Function

Here are two classes that should each do the job. The first just shows a map view of the set, while the second can write values back to the set through a special interface.

Call Syntax:

Map<K,V> immutable = new SetBackedMap<K,V>(Set<K> keys, Function<K,V> func);
Map<K,V> mutable = new MutableSetBackedMap<K,V>(Set<K> keys, Function<K,V> func);

Where to put this code?

Side note: If guava were my library, I'd make them accessible through the Maps class:

Map<K,V> immutable = Maps.immutableComputingMap(Set<K> keys, Function<K,V> func);
Map<K,V> mutable = Maps.mutableComputingMap(Set<K> keys, Function<K,V> func);

Immutable version:

I have implemented this as a one-way view:

  • Changes to the set are reflected in the map, but not vice-versa (and you can't change the map anyway, the put(key, value) method isn't implemented).
  • The entrySet() iterator uses the set iterator internally, so it will also inherit the internal iterator's handling of ConcurrentModificationException.
  • Both put(k,v) and entrySet().iterator().remove() will throw UnsupportedOperationException.
  • Values are cached in a WeakHashMap, with no special concurrency handling, i.e. there is no synchronization at any level. This will do for most cases, but if your function is expensive, you might want to add some locking.

Code:

public class SetBackedMap<K, V> extends AbstractMap<K, V>{

    private class MapEntry implements Entry<K, V>{
        private final K key;
        public MapEntry(final K key){
            this.key = key;
        }
        @Override
        public K getKey(){
            return this.key;
        }
        @Override
        public V getValue(){
            V value = SetBackedMap.this.cache.get(this.key);
            if(value == null){
                value = SetBackedMap.this.funk.apply(this.key);
                SetBackedMap.this.cache.put(this.key, value);
            }
            return value;
        }
        @Override
        public V setValue(final V value){
            throw new UnsupportedOperationException();
        }
    }

    private class EntrySet extends AbstractSet<Entry<K, V>>{

        public class EntryIterator implements Iterator<Entry<K, V>>{
            private final Iterator<K> inner;
            public EntryIterator(){
                this.inner = EntrySet.this.keys.iterator();
            }
            @Override
            public boolean hasNext(){
                return this.inner.hasNext();
            }
            @Override
            public Map.Entry<K, V> next(){
                final K key = this.inner.next();
                return new MapEntry(key);
            }
            @Override
            public void remove(){
                throw new UnsupportedOperationException();
            }
        }

        private final Set<K> keys;

        public EntrySet(final Set<K> keys){
            this.keys = keys;
        }

        @Override
        public Iterator<Map.Entry<K, V>> iterator(){
            return new EntryIterator();
        }

        @Override
        public int size(){
            return this.keys.size();
        }

    }

    private final WeakHashMap<K, V> cache;
    private final Set<Entry<K, V>> entries;
    private final Function<? super K, ? extends V> funk;

    public SetBackedMap(
        final Set<K> keys, Function<? super K, ? extends V> funk){
        this.funk = funk;
        this.cache = new WeakHashMap<K, V>();
        this.entries = new EntrySet(keys);
    }

    @Override
    public Set<Map.Entry<K, V>> entrySet(){
        return this.entries;
    }

}

Test:

final Map<Integer, String> map =
    new SetBackedMap<Integer, String>(
        new TreeSet<Integer>(Arrays.asList(
            1, 2, 4, 8, 16, 32, 64, 128, 256)),
        new Function<Integer, String>(){

            @Override
            public String apply(final Integer from){
                return Integer.toBinaryString(from.intValue());
            }
        });
for(final Map.Entry<Integer, String> entry : map.entrySet()){
    System.out.println(
        "Key: " + entry.getKey()
        + ", value: " + entry.getValue());
}

Output:

Key: 1, value: 1
Key: 2, value: 10
Key: 4, value: 100
Key: 8, value: 1000
Key: 16, value: 10000
Key: 32, value: 100000
Key: 64, value: 1000000
Key: 128, value: 10000000
Key: 256, value: 100000000

Mutable Version:

While I think it's a good idea to make this one-way, here's a version for Emil that provides a two-way view (it's a variation of Emil's variation of my solution :-)). It requires an extended map interface that I'll call ComputingMap to make clear that this is a map where it doesn't make sense to call put(key, value).

Map interface:

public interface ComputingMap<K, V> extends Map<K, V>{
    boolean removeKey(final K key);
    boolean addKey(final K key);
}

Map implementation:

public class MutableSetBackedMap<K, V> extends AbstractMap<K, V> implements
    ComputingMap<K, V>{

    public class MapEntry implements Entry<K, V>{

        private final K key;

        public MapEntry(final K key){
            this.key = key;
        }

        @Override
        public K getKey(){
            return this.key;
        }

        @Override
        public V getValue(){
            V value = MutableSetBackedMap.this.cache.get(this.key);
            if(value == null){
                value = MutableSetBackedMap.this.funk.apply(this.key);
                MutableSetBackedMap.this.cache.put(this.key, value);
            }
            return value;
        }

        @Override
        public V setValue(final V value){
            throw new UnsupportedOperationException();
        }

    }

    public class EntrySet extends AbstractSet<Entry<K, V>>{

        public class EntryIterator implements Iterator<Entry<K, V>>{

            private final Iterator<K> inner;

            public EntryIterator(){
                this.inner = MutableSetBackedMap.this.keys.iterator();
            }

            @Override
            public boolean hasNext(){
                return this.inner.hasNext();
            }

            @Override
            public Map.Entry<K, V> next(){
                final K key = this.inner.next();
                return new MapEntry(key);
            }

            @Override
            public void remove(){
                throw new UnsupportedOperationException();
            }

        }

        public EntrySet(){
        }

        @Override
        public Iterator<Map.Entry<K, V>> iterator(){
            return new EntryIterator();
        }

        @Override
        public int size(){
            return MutableSetBackedMap.this.keys.size();
        }

    }

    private final WeakHashMap<K, V> cache;
    private final Set<Entry<K, V>> entries;
    private final Function<? super K, ? extends V> funk;
    private final Set<K> keys;

    public MutableSetBackedMap(final Set<K> keys,
        final Function<? super K, ? extends V> funk){
        this.keys = keys;
        this.funk = funk;
        this.cache = new WeakHashMap<K, V>();
        this.entries = new EntrySet();
    }

    @Override
    public boolean addKey(final K key){
        return this.keys.add(key);
    }

    @Override
    public boolean removeKey(final K key){
        return this.keys.remove(key);
    }

    @Override
    public Set<Map.Entry<K, V>> entrySet(){
        return this.entries;
    }

}

Test:

public static void main(final String[] args){
    final ComputingMap<Integer, String> map =
        new MutableSetBackedMap<Integer, String>(
            new TreeSet<Integer>(Arrays.asList(
                1, 2, 4, 8, 16, 32, 64, 128, 256)),
            new Function<Integer, String>(){

                @Override
                public String apply(final Integer from){
                    return Integer.toBinaryString(from.intValue());
                }
            });
    System.out.println(map);
    map.addKey(3);
    map.addKey(217);
    map.removeKey(8);
    System.out.println(map);
}

Output:

{1=1, 2=10, 4=100, 8=1000, 16=10000, 32=100000, 64=1000000, 128=10000000, 256=100000000}
{1=1, 2=10, 3=11, 4=100, 16=10000, 32=100000, 64=1000000, 128=10000000, 217=11011001, 256=100000000}