Remove background noise from image to make text more clear for OCR

Zy0n picture Zy0n · Nov 23, 2015 · Viewed 17.5k times · Source

I've written an application that segments an image based on the text regions within it, and extracts those regions as I see fit. What I'm attempting to do is clean the image so OCR (Tesseract) gives an accurate result. I have the following image as an example:

enter image description here

Running this through tesseract gives a widely inaccurate result. However cleaning up the image (using photoshop) to get the image as follows:

enter image description here

Gives exactly the result I would expect. The first image is already being run through the following method to clean it to that point:

 public Mat cleanImage (Mat srcImage) {
    Core.normalize(srcImage, srcImage, 0, 255, Core.NORM_MINMAX);
    Imgproc.threshold(srcImage, srcImage, 0, 255, Imgproc.THRESH_OTSU);
    Imgproc.erode(srcImage, srcImage, new Mat());
    Imgproc.dilate(srcImage, srcImage, new Mat(), new Point(0, 0), 9);
    return srcImage;
}

What more can I do to clean the first image so it resembles the second image?

Edit: This is the original image before it's run through the cleanImage function.

enter image description here

Answer

dhanushka picture dhanushka · Nov 27, 2015

My answer is based on following assumptions. It's possible that none of them holds in your case.

  • It's possible for you to impose a threshold for bounding box heights in the segmented region. Then you should be able to filter out other components.
  • You know the average stroke widths of the digits. Use this information to minimize the chance that the digits are connected to other regions. You can use distance transform and morphological operations for this.

This is my procedure for extracting the digits:

  • Apply Otsu threshold to the image otsu
  • Take the distance transform dist
  • Threshold the distance transformed image using the stroke-width ( = 8) constraint sw2

  • Apply morphological operation to disconnect ws2op

  • Filter bounding box heights and make a guess where the digits are

stroke-width = 8 bb stroke-width = 10 bb2

EDIT

  • Prepare a mask using the convexhull of the found digit contours mask

  • Copy digits region to a clean image using the mask

stroke-width = 8 cl1

stroke-width = 10 cl2

My Tesseract knowledge is a bit rusty. As I remember you can get a confidence level for the characters. You may be able to filter out noise using this information if you still happen to detect noisy regions as character bounding boxes.

C++ Code

Mat im = imread("aRh8C.png", 0);
// apply Otsu threshold
Mat bw;
threshold(im, bw, 0, 255, CV_THRESH_BINARY_INV | CV_THRESH_OTSU);
// take the distance transform
Mat dist;
distanceTransform(bw, dist, CV_DIST_L2, CV_DIST_MASK_PRECISE);
Mat dibw;
// threshold the distance transformed image
double SWTHRESH = 8;    // stroke width threshold
threshold(dist, dibw, SWTHRESH/2, 255, CV_THRESH_BINARY);
Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
// perform opening, in case digits are still connected
Mat morph;
morphologyEx(dibw, morph, CV_MOP_OPEN, kernel);
dibw.convertTo(dibw, CV_8U);
// find contours and filter
Mat cont;
morph.convertTo(cont, CV_8U);

Mat binary;
cvtColor(dibw, binary, CV_GRAY2BGR);

const double HTHRESH = im.rows * .5;    // height threshold
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
vector<Point> digits; // points corresponding to digit contours

findContours(cont, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
for(int idx = 0; idx >= 0; idx = hierarchy[idx][0])
{
    Rect rect = boundingRect(contours[idx]);
    if (rect.height > HTHRESH)
    {
        // append the points of this contour to digit points
        digits.insert(digits.end(), contours[idx].begin(), contours[idx].end());

        rectangle(binary, 
            Point(rect.x, rect.y), Point(rect.x + rect.width - 1, rect.y + rect.height - 1),
            Scalar(0, 0, 255), 1);
    }
}

// take the convexhull of the digit contours
vector<Point> digitsHull;
convexHull(digits, digitsHull);
// prepare a mask
vector<vector<Point>> digitsRegion;
digitsRegion.push_back(digitsHull);
Mat digitsMask = Mat::zeros(im.rows, im.cols, CV_8U);
drawContours(digitsMask, digitsRegion, 0, Scalar(255, 255, 255), -1);
// expand the mask to include any information we lost in earlier morphological opening
morphologyEx(digitsMask, digitsMask, CV_MOP_DILATE, kernel);
// copy the region to get a cleaned image
Mat cleaned = Mat::zeros(im.rows, im.cols, CV_8U);
dibw.copyTo(cleaned, digitsMask);

EDIT

Java Code

Mat im = Highgui.imread("aRh8C.png", 0);
// apply Otsu threshold
Mat bw = new Mat(im.size(), CvType.CV_8U);
Imgproc.threshold(im, bw, 0, 255, Imgproc.THRESH_BINARY_INV | Imgproc.THRESH_OTSU);
// take the distance transform
Mat dist = new Mat(im.size(), CvType.CV_32F);
Imgproc.distanceTransform(bw, dist, Imgproc.CV_DIST_L2, Imgproc.CV_DIST_MASK_PRECISE);
// threshold the distance transform
Mat dibw32f = new Mat(im.size(), CvType.CV_32F);
final double SWTHRESH = 8.0;    // stroke width threshold
Imgproc.threshold(dist, dibw32f, SWTHRESH/2.0, 255, Imgproc.THRESH_BINARY);
Mat dibw8u = new Mat(im.size(), CvType.CV_8U);
dibw32f.convertTo(dibw8u, CvType.CV_8U);

Mat kernel = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(3, 3));
// open to remove connections to stray elements
Mat cont = new Mat(im.size(), CvType.CV_8U);
Imgproc.morphologyEx(dibw8u, cont, Imgproc.MORPH_OPEN, kernel);
// find contours and filter based on bounding-box height
final double HTHRESH = im.rows() * 0.5; // bounding-box height threshold
List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
List<Point> digits = new ArrayList<Point>();    // contours of the possible digits
Imgproc.findContours(cont, contours, new Mat(), Imgproc.RETR_CCOMP, Imgproc.CHAIN_APPROX_SIMPLE);
for (int i = 0; i < contours.size(); i++)
{
    if (Imgproc.boundingRect(contours.get(i)).height > HTHRESH)
    {
        // this contour passed the bounding-box height threshold. add it to digits
        digits.addAll(contours.get(i).toList());
    }   
}
// find the convexhull of the digit contours
MatOfInt digitsHullIdx = new MatOfInt();
MatOfPoint hullPoints = new MatOfPoint();
hullPoints.fromList(digits);
Imgproc.convexHull(hullPoints, digitsHullIdx);
// convert hull index to hull points
List<Point> digitsHullPointsList = new ArrayList<Point>();
List<Point> points = hullPoints.toList();
for (Integer i: digitsHullIdx.toList())
{
    digitsHullPointsList.add(points.get(i));
}
MatOfPoint digitsHullPoints = new MatOfPoint();
digitsHullPoints.fromList(digitsHullPointsList);
// create the mask for digits
List<MatOfPoint> digitRegions = new ArrayList<MatOfPoint>();
digitRegions.add(digitsHullPoints);
Mat digitsMask = Mat.zeros(im.size(), CvType.CV_8U);
Imgproc.drawContours(digitsMask, digitRegions, 0, new Scalar(255, 255, 255), -1);
// dilate the mask to capture any info we lost in earlier opening
Imgproc.morphologyEx(digitsMask, digitsMask, Imgproc.MORPH_DILATE, kernel);
// cleaned image ready for OCR
Mat cleaned = Mat.zeros(im.size(), CvType.CV_8U);
dibw8u.copyTo(cleaned, digitsMask);
// feed cleaned to Tesseract