I'm new to Java 8. I still don't know the API in depth, but I've made a small informal benchmark to compare the performance of the new Streams API vs the good old Collections.
The test consists in filtering a list of Integer
, and for each even number, calculate the square root and storing it in a result List
of Double
.
Here is the code:
public static void main(String[] args) {
//Calculating square root of even numbers from 1 to N
int min = 1;
int max = 1000000;
List<Integer> sourceList = new ArrayList<>();
for (int i = min; i < max; i++) {
sourceList.add(i);
}
List<Double> result = new LinkedList<>();
//Collections approach
long t0 = System.nanoTime();
long elapsed = 0;
for (Integer i : sourceList) {
if(i % 2 == 0){
result.add(Math.sqrt(i));
}
}
elapsed = System.nanoTime() - t0;
System.out.printf("Collections: Elapsed time:\t %d ns \t(%f seconds)%n", elapsed, elapsed / Math.pow(10, 9));
//Stream approach
Stream<Integer> stream = sourceList.stream();
t0 = System.nanoTime();
result = stream.filter(i -> i%2 == 0).map(i -> Math.sqrt(i)).collect(Collectors.toList());
elapsed = System.nanoTime() - t0;
System.out.printf("Streams: Elapsed time:\t\t %d ns \t(%f seconds)%n", elapsed, elapsed / Math.pow(10, 9));
//Parallel stream approach
stream = sourceList.stream().parallel();
t0 = System.nanoTime();
result = stream.filter(i -> i%2 == 0).map(i -> Math.sqrt(i)).collect(Collectors.toList());
elapsed = System.nanoTime() - t0;
System.out.printf("Parallel streams: Elapsed time:\t %d ns \t(%f seconds)%n", elapsed, elapsed / Math.pow(10, 9));
}.
And here are the results for a dual core machine:
Collections: Elapsed time: 94338247 ns (0,094338 seconds)
Streams: Elapsed time: 201112924 ns (0,201113 seconds)
Parallel streams: Elapsed time: 357243629 ns (0,357244 seconds)
For this particular test, streams are about twice as slow as collections, and parallelism doesn't help (or either I'm using it the wrong way?).
Questions:
Updated results.
I ran the test 1k times after JVM warmup (1k iterations) as advised by @pveentjer:
Collections: Average time: 206884437,000000 ns (0,206884 seconds)
Streams: Average time: 98366725,000000 ns (0,098367 seconds)
Parallel streams: Average time: 167703705,000000 ns (0,167704 seconds)
In this case streams are more performant. I wonder what would be observed in an app where the filtering function is only called once or twice during runtime.
Stop using LinkedList
for anything but heavy removing from the middle of the list using iterator.
Stop writing benchmarking code by hand, use JMH.
Proper benchmarks:
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@BenchmarkMode(Mode.AverageTime)
@OperationsPerInvocation(StreamVsVanilla.N)
public class StreamVsVanilla {
public static final int N = 10000;
static List<Integer> sourceList = new ArrayList<>();
static {
for (int i = 0; i < N; i++) {
sourceList.add(i);
}
}
@Benchmark
public List<Double> vanilla() {
List<Double> result = new ArrayList<>(sourceList.size() / 2 + 1);
for (Integer i : sourceList) {
if (i % 2 == 0){
result.add(Math.sqrt(i));
}
}
return result;
}
@Benchmark
public List<Double> stream() {
return sourceList.stream()
.filter(i -> i % 2 == 0)
.map(Math::sqrt)
.collect(Collectors.toCollection(
() -> new ArrayList<>(sourceList.size() / 2 + 1)));
}
}
Result:
Benchmark Mode Samples Mean Mean error Units
StreamVsVanilla.stream avgt 10 17.588 0.230 ns/op
StreamVsVanilla.vanilla avgt 10 10.796 0.063 ns/op
Just as I expected stream implementation is fairly slower. JIT is able to inline all lambda stuff but doesn't produce as perfectly concise code as vanilla version.
Generally, Java 8 streams are not magic. They couldn't speedup already well-implemented things (with, probably, plain iterations or Java 5's for-each statements replaced with Iterable.forEach()
and Collection.removeIf()
calls). Streams are more about coding convenience and safety. Convenience -- speed tradeoff is working here.