Circle Line Intersection points

cobie picture cobie · Oct 24, 2012 · Viewed 16k times · Source
public static ArrayList<IntPoint> getCircleLineIntersectionPoint(IntPoint pointA, IntPoint pointB, IntPoint center, int radius) {
    // returns a list of intersection points between a line which passes through given points,
    // pointA and pointB, and a circle described by given radius and center coordinate

    double disc, A, B, C, slope, c;
    double x1, x2, y1, y2;
    IntPoint point1, point2;
    ArrayList<IntPoint> intersections = new ArrayList<IntPoint>();  
    try{
        slope = Util.calculateSlope(pointA, pointB);
    }catch (UndefinedSlopeException e){         
        C =  Math.pow(center.y, 2) + Math.pow(pointB.x, 2) - 2 * pointB.x * center.x + Math.pow(center.x, 2) - Math.pow(radius, 2);
        B = -2 * center.y;
        A = 1;
        disc = Math.pow(B, 2) - 4 * 1 * C;
        if (disc < 0){
            return intersections;
        }
        else{
            y1 = (-B + Math.sqrt(disc)) / (2 * A);
            y2 = (-B - Math.sqrt(disc)) / (2 * A);

            x1 = pointB.x;
            x2 = pointB.x;
        }
        point1 = new IntPoint((int)x1, (int)y1);
        point2 = new IntPoint((int)x2, (int)y2);
        if (Util.euclideanDistance(pointA,  point2) > Util.euclideanDistance(pointA, point1)){
            intersections.add(point1);
        }
        else{
            intersections.add(point2);
        }
        return intersections;
    }
    if (slope == 0){
        C =  Math.pow(center.x, 2)  + Math.pow(center.y, 2) + Math.pow(pointB.y, 2) - 2 * pointB.y * center.y  - Math.pow(radius, 2);
        B = -2 * center.x;
        A = 1;
        disc = Math.pow(B, 2) - 4 * 1 * C;
        if (disc < 0){
            return intersections;
        }
        else{
            x1 = (-B + Math.sqrt(disc)) / (2*A);
            x2 = (-B - Math.sqrt(disc)) / (2*A);
            y1 = pointB.y;
            y2 = pointB.y;
        }
    }
    else{
        c = slope * pointA.x + pointA.y;
        B = (2 * center.x + 2 * center.y * slope  + 2 * c * slope);
        A = 1 + Math.pow(slope, 2);
        C = (Math.pow(center.x, 2) + Math.pow(c, 2) + 2 * center.y * c + Math.pow(center.y, 2) - Math.pow(radius, 2));
        disc = Math.pow(B, 2) - (4 * A * C);

        if (disc < 0){
            return intersections;
        }
        else{
            x1 = (-B + Math.sqrt(disc)) / (2 * A);
            x2 = (-B - Math.sqrt(disc)) / (2 * A);

            y1 = slope * x1 - c;
            y2 = slope * x2 - c;
        }
    }

    point1 = new IntPoint((int)x1, (int)y1);
    point2 = new IntPoint((int)x2, (int)y2);
    if (Util.euclideanDistance(pointA,  point2) > Util.euclideanDistance(pointA, point1)){
        //if (Util.angleBetween(pointA, pointB, point1) < Math.PI/2){
            intersections.add(point1);
        //}
    }
    else{
        //if (Util.angleBetween(pointA, pointB, point1) < Math.PI/2){
            intersections.add(point2);
        //}
    }       
    return intersections;
}

I am using the above algorithm to test for intersection between a circle and a line. It works fine sometimes but at other times it fails. The code represents the equation which is derived from solving for x simultaneously from circle and line equations (x-a)^+(y-b)^2=r^2 and y = mx - mx1 + y1. Has anyone got an idea where I am going wrong either in my maths or elsewhere?

Answer

arne.b picture arne.b · Oct 24, 2012

Your calculations seem quite long, and I do not see the use of the different cases you test. Anyway, since I found the problem interesting I attempted to solve it myself and came up with the following. Feel free to replace double radius by int radius and use IntPoints, but be aware that every time you cast, as discussed in the comments, results that are not exact integer intersection points will become wrong.

The background of the calculations performed is this: From point A, a scaled version of vector AB points to a point on the circle. That point has distance radius from center. Hence, |AC + scalingFactor * AB|=r.

import java.util.Arrays;
import java.util.Collections;
import java.util.List;

public class CircleLine {

    public static List<Point> getCircleLineIntersectionPoint(Point pointA,
            Point pointB, Point center, double radius) {
        double baX = pointB.x - pointA.x;
        double baY = pointB.y - pointA.y;
        double caX = center.x - pointA.x;
        double caY = center.y - pointA.y;

        double a = baX * baX + baY * baY;
        double bBy2 = baX * caX + baY * caY;
        double c = caX * caX + caY * caY - radius * radius;

        double pBy2 = bBy2 / a;
        double q = c / a;

        double disc = pBy2 * pBy2 - q;
        if (disc < 0) {
            return Collections.emptyList();
        }
        // if disc == 0 ... dealt with later
        double tmpSqrt = Math.sqrt(disc);
        double abScalingFactor1 = -pBy2 + tmpSqrt;
        double abScalingFactor2 = -pBy2 - tmpSqrt;

        Point p1 = new Point(pointA.x - baX * abScalingFactor1, pointA.y
                - baY * abScalingFactor1);
        if (disc == 0) { // abScalingFactor1 == abScalingFactor2
            return Collections.singletonList(p1);
        }
        Point p2 = new Point(pointA.x - baX * abScalingFactor2, pointA.y
                - baY * abScalingFactor2);
        return Arrays.asList(p1, p2);
    }

    static class Point {
        double x, y;

        public Point(double x, double y) { this.x = x; this.y = y; }

        @Override
        public String toString() {
            return "Point [x=" + x + ", y=" + y + "]";
        }
    }


    public static void main(String[] args) {
        System.out.println(getCircleLineIntersectionPoint(new Point(-3, -3),
                new Point(-3, 3), new Point(0, 0), 5));
        System.out.println(getCircleLineIntersectionPoint(new Point(0, -2),
                new Point(1, -2), new Point(1, 1), 5));
        System.out.println(getCircleLineIntersectionPoint(new Point(1, -1),
                new Point(-1, 0), new Point(-1, 1), 5));
        System.out.println(getCircleLineIntersectionPoint(new Point(-3, -3),
                new Point(-2, -2), new Point(0, 0), Math.sqrt(2)));
    }