PCA Implementation in Java

Trup picture Trup · May 15, 2012 · Viewed 19.5k times · Source

I need implementation of PCA in Java. I am interested in finding something that's well documented, practical and easy to use. Any recommendations?

Answer

LotiLotiLoti picture LotiLotiLoti · May 6, 2017

There are now a number of Principal Component Analysis implementations for Java.

  1. Apache Spark: https://spark.apache.org/docs/2.1.0/mllib-dimensionality-reduction.html#principal-component-analysis-pca

    SparkConf conf = new SparkConf().setAppName("PCAExample").setMaster("local");
    try (JavaSparkContext sc = new JavaSparkContext(conf)) {
        //Create points as Spark Vectors
        List<Vector> vectors = Arrays.asList(
                Vectors.dense( -1.0, -1.0 ),
                Vectors.dense( -1.0, 1.0 ),
                Vectors.dense( 1.0, 1.0 ));
    
        //Create Spark MLLib RDD
        JavaRDD<Vector> distData = sc.parallelize(vectors);
        RDD<Vector> vectorRDD = distData.rdd();
    
        //Execute PCA Projection to 2 dimensions
        PCA pca = new PCA(2); 
        PCAModel pcaModel = pca.fit(vectorRDD);
        Matrix matrix = pcaModel.pc();
    }
    
  2. ND4J: https://javadoc.io/doc/org.nd4j/nd4j-api/1.0.0-beta7/org/nd4j/linalg/dimensionalityreduction/PCA.html

    //Create points as NDArray instances
    List<INDArray> ndArrays = Arrays.asList(
            new NDArray(new float [] {-1.0F, -1.0F}),
            new NDArray(new float [] {-1.0F, 1.0F}),
            new NDArray(new float [] {1.0F, 1.0F}));
    
    //Create matrix of points (rows are observations; columns are features)
    INDArray matrix = new NDArray(ndArrays, new int [] {3,2});
    
    //Execute PCA - again to 2 dimensions
    INDArray factors = PCA.pca_factor(matrix, 2, false);
    
  3. Apache Commons Math (single threaded; no framework)

    //create points in a double array
    double[][] pointsArray = new double[][] { 
        new double[] { -1.0, -1.0 }, 
        new double[] { -1.0, 1.0 },
        new double[] { 1.0, 1.0 } };
    
    //create real matrix
    RealMatrix realMatrix = MatrixUtils.createRealMatrix(pointsArray);
    
    //create covariance matrix of points, then find eigen vectors
    //see https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
    
    Covariance covariance = new Covariance(realMatrix);
    RealMatrix covarianceMatrix = covariance.getCovarianceMatrix();
    EigenDecomposition ed = new EigenDecomposition(covarianceMatrix);
    

Note, Singular Value Decomposition, which can also be used to find Principal Components, has equivalent implementations.