Is a Java hashmap search really O(1)?

paxdiablo picture paxdiablo · Jun 28, 2009 · Viewed 121.9k times · Source

I've seen some interesting claims on SO re Java hashmaps and their O(1) lookup time. Can someone explain why this is so? Unless these hashmaps are vastly different from any of the hashing algorithms I was bought up on, there must always exist a dataset that contains collisions.

In which case, the lookup would be O(n) rather than O(1).

Can someone explain whether they are O(1) and, if so, how they achieve this?

Answer

SingleNegationElimination picture SingleNegationElimination · Jun 28, 2009

A particular feature of a HashMap is that unlike, say, balanced trees, its behavior is probabilistic. In these cases its usually most helpful to talk about complexity in terms of the probability of a worst-case event occurring would be. For a hash map, that of course is the case of a collision with respect to how full the map happens to be. A collision is pretty easy to estimate.

pcollision = n / capacity

So a hash map with even a modest number of elements is pretty likely to experience at least one collision. Big O notation allows us to do something more compelling. Observe that for any arbitrary, fixed constant k.

O(n) = O(k * n)

We can use this feature to improve the performance of the hash map. We could instead think about the probability of at most 2 collisions.

pcollision x 2 = (n / capacity)2

This is much lower. Since the cost of handling one extra collision is irrelevant to Big O performance, we've found a way to improve performance without actually changing the algorithm! We can generalzie this to

pcollision x k = (n / capacity)k

And now we can disregard some arbitrary number of collisions and end up with vanishingly tiny likelihood of more collisions than we are accounting for. You could get the probability to an arbitrarily tiny level by choosing the correct k, all without altering the actual implementation of the algorithm.

We talk about this by saying that the hash-map has O(1) access with high probability