Levenshtein Distance Algorithm better than O(n*m)?

Jason picture Jason · Oct 30, 2010 · Viewed 24.4k times · Source

I have been looking for an advanced levenshtein distance algorithm, and the best I have found so far is O(n*m) where n and m are the lengths of the two strings. The reason why the algorithm is at this scale is because of space, not time, with the creation of a matrix of the two strings such as this one:

alt text

Is there a publicly-available levenshtein algorithm which is better than O(n*m)? I am not averse to looking at advanced computer science papers & research, but haven't been able to find anything. I have found one company, Exorbyte, which supposedly has built a super-advanced and super-fast Levenshtein algorithm but of course that is a trade secret. I am building an iPhone app which I would like to use the Levenshtein distance calculation. There is an objective-c implementation available, but with the limited amount of memory on iPods and iPhones, I'd like to find a better algorithm if possible.

Answer

srean picture srean · Oct 30, 2010

Are you interested in reducing the time complexity or the space complexity ? The average time complexity can be reduced O(n + d^2), where n is the length of the longer string and d is the edit distance. If you are only interested in the edit distance and not interested in reconstructing the edit sequence, you only need to keep the last two rows of the matrix in memory, so that will be order(n).

If you can afford to approximate, there are poly-logarithmic approximations.

For the O(n +d^2) algorithm look for Ukkonen's optimization or its enhancement Enhanced Ukkonen. The best approximation that I know of is this one by Andoni, Krauthgamer, Onak