I am going through Learn you a haskell book, and in Chapter 8 there is a snippet of code which looks like this
data LockerState = Taken | Free deriving (Eq, Show)
type Code = String
type LockerMap = Map.Map Int (LockerState, Code)
lookup' :: Int -> LockerMap -> Either String Code
lookup' num_ map_ =
case (Map.lookup num_ map_) of
Nothing -> Left $ "LockerNumber doesn't exist!"
Just (state, code) -> if state == Taken
then Left $ "LockerNumber already taken!"
else Right $ code
This works. However, I wanted to convert if/else block to guard statements like this:
lookup' :: Int -> LockerMap -> Either String Code
lookup' num_ map_ =
case (Map.lookup num_ map_) of
Nothing -> Left $ "LockerNumber doesn't exist!"
Just (state, code) ->
| state == Taken = Left $ "LockerNumber already taken!"
| otherwise = Right $ Code
This doesn't compile. It seems that usage of guards in Haskell is very restrictive/non intuitive. SO Ex1 SO Ex2. Is there a definite source which I can read which tells at which places I can use guards?
There are two places guards are allowed: function definitions and case
expressions. In both contexts, guards appear after a pattern and before the body, so you use =
in functions and ->
in case
branches, as usual:
divide x y
| y == 0 = Nothing
--------
| otherwise = Just (x / y)
-----------
positively mx = case mx of
Just x | x > 0 -> Just x
-------
_ -> Nothing
Guards are simply constraints for patterns, so Just x
matches any non-Nothing
value, but Just x | x > 0
only matches a Just
whose wrapped value is also positive.
I suppose the definitive reference is the Haskell Report, specifically §3.13 Case Expressions and §4.4.3 Function and Pattern Bindings, which describe the syntax of guards and specify where they’re allowed.
In your code, you want:
Just (state, code)
| state == Taken -> Left "LockerNumber already taken!"
| otherwise -> Right code
This is also expressible with patterns alone:
Just (Taken, _) -> Left "LockerNumber already taken!"
Just (_, code) -> Right code