This is a follow-up of Why am I getting "Non-exhaustive patterns in function..." when I invoke my Haskell substring function?
I understand that using -Wall
, GHC can warn against non-exhaustive patterns. I'm wondering what's the reason behind not making it a compile-time error by default given that it's always possible to explicitly define a partial function:
f :: [a] -> [b] -> Int
f [] _ = error "undefined for empty array"
f _ [] = error "undefined for empty array"
f (_:xs) (_:ys) = length xs + length ys
The question is not GHC-specific.
Is it because...
There are cases where you don't mind that a pattern match is non-exhaustive. For example, while this might not be the optimal implementation, I don't think it would help if it didn't compile:
fac 0 = 1
fac n | n > 0 = n * fac (n-1)
That this is non-exhaustive (negative numbers don't match any case) doesn't really matter for the typical usage of the factorial function.
Also it might not generally be possible to decide for the compiler if a pattern match is exhaustive:
mod2 :: Integer -> Integer
mod2 n | even n = 0
mod2 n | odd n = 1
Here all cases should be covered, but the compiler probably can't detect it. Since the guards could be arbitrarily complex, the compiler cannot always decide if the patterns are exhaustive. Of course this example would better be written with otherwise
, but I think it should also compile in its current form.