I'm relatively new to Hadoop and trying to figure out how to programmatically chain jobs (multiple mappers, reducers) with ChainMapper, ChainReducer. I've found a few partial examples, but not a single complete and working one.
My current test code is
public class ChainJobs extends Configured implements Tool {
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
}
public static class Map2 extends MapReduceBase implements Mapper<Text, IntWritable, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(Text key, IntWritable value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken().concat("Justatest"));
output.collect(word, one);
}
}
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
@Override
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
@Override
public int run(String[] args) {
Configuration conf = getConf();
JobConf job = new JobConf(conf);
job.setJobName("TestforChainJobs");
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
JobConf map1Conf = new JobConf(false);
ChainMapper.addMapper(job, Map.class, LongWritable.class, Text.class, Text.class, IntWritable.class, true, map1Conf);
JobConf map2Conf = new JobConf(false);
ChainMapper.addMapper(job, Map2.class, Text.class, IntWritable.class, Text.class, IntWritable.class, true, map2Conf);
JobConf reduceConf = new JobConf(false);
ChainReducer.setReducer(job, Reduce.class, Text.class, IntWritable.class, Text.class, IntWritable.class, true, reduceConf);
JobClient.runJob(job);
return 0;
}
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new ChainJobs(), args);
System.exit(res);
}
But it fails with
MapAttempt TASK_TYPE="MAP" TASKID="task_201210162337_0009_m_000000" TASK_ATTEMPT_ID="attempt_201210162337_0009_m_000000_0" TASK_STATUS="FAILED" FINISH_TIME="1350397216365" HOSTNAME="localhost\.localdomain" ERROR="java\.lang\.RuntimeException: Error in configuring object
at org\.apache\.hadoop\.util\.ReflectionUtils\.setJobConf(ReflectionUtils\.java:106)
at org\.apache\.hadoop\.util\.ReflectionUtils\.setConf(ReflectionUtils\.java:72)
at org\.apache\.hadoop\.util\.ReflectionUtils\.newInstance(ReflectionUtils\.java:130)
at org\.apache\.hadoop\.mapred\.MapTask\.runOldMapper(MapTask\.java:389)
at org\.apache\.hadoop\.mapred\.MapTask\.run(MapTask\.java:327)
at org\.apache\.hadoop\.mapred\.Child$4\.run(Child\.java:268)
at java\.security\.AccessController\.doPrivileged(Native Method)
at javax\.security\.auth\.Subject\.doAs(Subject\.java:396)
Any hints or a very simple working example much appreciated.
I have coded a wordcount job based on a chain mapper. The code has been written on new API and its working well :)
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.chain.ChainMapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
//implementing CHAIN MAPREDUCE without using custom format
//SPLIT MAPPER
class SplitMapper extends Mapper<Object,Text,Text,IntWritable>
{
private IntWritable dummyValue=new IntWritable(1);
//private String content;
private String tokens[];
@Override
public void map(Object key,Text value,Context context)throws IOException,InterruptedException{
tokens=value.toString().split(" ");
for(String x:tokens)
{
context.write(new Text(x), dummyValue);
}
}
}
//UPPER CASE MAPPER
class UpperCaseMapper extends Mapper<Text,IntWritable,Text,IntWritable>
{
@Override
public void map(Text key,IntWritable value,Context context)throws IOException,InterruptedException{
String val=key.toString().toUpperCase();
Text newKey=new Text(val);
context.write(newKey, value);
}
}
//ChainMapReducer
class ChainMapReducer extends Reducer<Text,IntWritable,Text,IntWritable>
{
private int sum=0;
@Override
public void reduce(Text key,Iterable<IntWritable>values,Context context)throws IOException,InterruptedException{
for(IntWritable value:values)
{
sum+=value.get();
}
context.write(key, new IntWritable(sum));
}
}
public class FirstClass extends Configured implements Tool{
static Configuration cf;
public int run (String args[])throws IOException,InterruptedException,ClassNotFoundException{
cf=new Configuration();
//bypassing the GenericOptionsParser part and directly running into job declaration part
Job j=Job.getInstance(cf);
/**************CHAIN MAPPER AREA STARTS********************************/
Configuration splitMapConfig=new Configuration(false);
//below we add the 1st mapper class under ChainMapper Class
ChainMapper.addMapper(j, SplitMapper.class, Object.class, Text.class, Text.class, IntWritable.class, splitMapConfig);
//configuration for second mapper
Configuration upperCaseConfig=new Configuration(false);
//below we add the 2nd mapper that is the lower case mapper to the Chain Mapper class
ChainMapper.addMapper(j, UpperCaseMapper.class, Text.class, IntWritable.class, Text.class, IntWritable.class, upperCaseConfig);
/**************CHAIN MAPPER AREA FINISHES********************************/
//now proceeding with the normal delivery
j.setJarByClass(FirstClass.class);
j.setCombinerClass(ChainMapReducer.class);
j.setOutputKeyClass(Text.class);
j.setOutputValueClass(IntWritable.class);
Path p=new Path(args[1]);
//set the input and output URI
FileInputFormat.addInputPath(j, new Path(args[0]));
FileOutputFormat.setOutputPath(j, p);
p.getFileSystem(cf).delete(p, true);
return j.waitForCompletion(true)?0:1;
}
public static void main(String args[])throws Exception{
int res=ToolRunner.run(cf, new FirstClass(), args);
System.exit(res);
}
}
the part of the output has been shown below
A 619
ACCORDING 636
ACCOUNT 638
ACROSS? 655
ADDRESSES 657
AFTER 674
AGGREGATING, 687
AGO, 704
ALL 721
ALMOST 755
ALTERING 768
AMOUNT 785
AN 819
ANATOMY 820
AND 1198
ANXIETY 1215
ANY 1232
APACHE 1300
APPENDING 1313
APPLICATIONS 1330
APPLICATIONS. 1347
APPLICATIONS.� 1364
APPLIES 1381
ARCHITECTURE, 1387
ARCHIVES 1388
ARE 1405
AS 1422
BASED 1439
You might get to see some special or unwanted characters since I have not used any cleansing in order to remove the punctuation. I just have focussed on the working of a chain mapper. Thanks :)