I would like to calculate avg and count in a single group by statement in Pyspark. How can I do that?
df = spark.createDataFrame([(1, 'John', 1.79, 28,'M', 'Doctor'),
(2, 'Steve', 1.78, 45,'M', None),
(3, 'Emma', 1.75, None, None, None),
(4, 'Ashley',1.6, 33,'F', 'Analyst'),
(5, 'Olivia', 1.8, 54,'F', 'Teacher'),
(6, 'Hannah', 1.82, None, 'F', None),
(7, 'William', 1.7, 42,'M', 'Engineer'),
(None,None,None,None,None,None),
(8,'Ethan',1.55,38,'M','Doctor'),
(9,'Hannah',1.65,None,'F','Doctor')]
, ['Id', 'Name', 'Height', 'Age', 'Gender', 'Profession'])
#This only shows avg but also I need count right next to it. How can I do that?
df.groupBy("Profession").agg({"Age":"avg"}).show()
df.show()
Thank you.
For the same column:
from pyspark.sql import functions as F
df.groupBy("Profession").agg(F.mean('Age'), F.count('Age')).show()
If you're able to use different columns:
df.groupBy("Profession").agg({'Age':'avg', 'Gender':'count'}).show()