NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver

gpu
dbl001 picture dbl001 · Mar 23, 2017 · Viewed 102.6k times · Source

I'm running an AWS EC2 g2.2xlarge instance with Ubuntu 14.04 LTS. I'd like to observe the GPU utilization while training my TensorFlow models. I get an error trying to run 'nvidia-smi'.

ubuntu@ip-10-0-1-213:/etc/alternatives$ cd /usr/lib/nvidia-375/bin
ubuntu@ip-10-0-1-213:/usr/lib/nvidia-375/bin$ ls
nvidia-bug-report.sh     nvidia-debugdump     nvidia-xconfig
nvidia-cuda-mps-control  nvidia-persistenced
nvidia-cuda-mps-server   nvidia-smi
ubuntu@ip-10-0-1-213:/usr/lib/nvidia-375/bin$ ./nvidia-smi
NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.


ubuntu@ip-10-0-1-213:/usr/lib/nvidia-375/bin$ dpkg -l | grep nvidia 
ii  nvidia-346                                            352.63-0ubuntu0.14.04.1                             amd64        Transitional package for nvidia-346
ii  nvidia-346-dev                                        346.46-0ubuntu1                                     amd64        NVIDIA binary Xorg driver development files
ii  nvidia-346-uvm                                        346.96-0ubuntu0.0.1                                 amd64        Transitional package for nvidia-346
ii  nvidia-352                                            375.26-0ubuntu1                                     amd64        Transitional package for nvidia-375
ii  nvidia-375                                            375.39-0ubuntu0.14.04.1                             amd64        NVIDIA binary driver - version 375.39
ii  nvidia-375-dev                                        375.39-0ubuntu0.14.04.1                             amd64        NVIDIA binary Xorg driver development files
ii  nvidia-modprobe                                       375.26-0ubuntu1                                     amd64        Load the NVIDIA kernel driver and create device files
ii  nvidia-opencl-icd-346                                 352.63-0ubuntu0.14.04.1                             amd64        Transitional package for nvidia-opencl-icd-352
ii  nvidia-opencl-icd-352                                 375.26-0ubuntu1                                     amd64        Transitional package for nvidia-opencl-icd-375
ii  nvidia-opencl-icd-375                                 375.39-0ubuntu0.14.04.1                             amd64        NVIDIA OpenCL ICD
ii  nvidia-prime                                          0.6.2.1                                             amd64        Tools to enable NVIDIA's Prime
ii  nvidia-settings                                       375.26-0ubuntu1                                     amd64        Tool for configuring the NVIDIA graphics driver
ubuntu@ip-10-0-1-213:/usr/lib/nvidia-375/bin$ lspci | grep -i nvidia
00:03.0 VGA compatible controller: NVIDIA Corporation GK104GL [GRID K520] (rev a1)
ubuntu@ip-10-0-1-213:/usr/lib/nvidia-375/bin$ 

$ inxi -G
Graphics:  Card-1: Cirrus Logic GD 5446 
           Card-2: NVIDIA GK104GL [GRID K520] 
           X.org: 1.15.1 driver: N/A tty size: 80x24 Advanced Data: N/A out of X

$  lspci -k | grep -A 2 -E "(VGA|3D)"
00:02.0 VGA compatible controller: Cirrus Logic GD 5446
    Subsystem: XenSource, Inc. Device 0001
    Kernel driver in use: cirrus
00:03.0 VGA compatible controller: NVIDIA Corporation GK104GL [GRID K520] (rev a1)
    Subsystem: NVIDIA Corporation Device 1014
00:1f.0 Unassigned class [ff80]: XenSource, Inc. Xen Platform Device (rev 01)

I followed these instructions to install CUDA 7 and cuDNN:

$sudo apt-get -q2 update
$sudo apt-get upgrade
$sudo reboot

=======================================================================

Post reboot, update the initramfs by running '$sudo update-initramfs -u'

Now, please edit the /etc/modprobe.d/blacklist.conf file to blacklist nouveau. Open the file in an editor and insert the following lines at the end of the file.

blacklist nouveau blacklist lbm-nouveau options nouveau modeset=0 alias nouveau off alias lbm-nouveau off

Save and exit from the file.

Now install the build essential tools and update the initramfs and reboot again as below:

$sudo apt-get install linux-{headers,image,image-extra}-$(uname -r) build-essential
$sudo update-initramfs -u
$sudo reboot

========================================================================

Post reboot, run the following commands to install Nvidia.

$sudo wget http://developer.download.nvidia.com/compute/cuda/7_0/Prod/local_installers/cuda_7.0.28_linux.run
$sudo chmod 700 ./cuda_7.0.28_linux.run
$sudo ./cuda_7.0.28_linux.run
$sudo update-initramfs -u
$sudo reboot

========================================================================

Now that the system has come up, verify the installation by running the following.

$sudo modprobe nvidia
$sudo nvidia-smi -q | head`enter code here`

You should see the output like 'nvidia.png'.

Now run the following commands. $

cd ~/NVIDIA_CUDA-7.0_Samples/1_Utilities/deviceQuery
$make
$./deviceQuery

However, 'nvidia-smi' still doesn't show GPU activity while Tensorflow is training models:

ubuntu@ip-10-0-1-48:~$ ipython
Python 2.7.11 |Anaconda custom (64-bit)| (default, Dec  6 2015, 18:08:32) 
Type "copyright", "credits" or "license" for more information.

IPython 4.1.2 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

In [1]: import tensorflow as tf 
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.7.5 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.7.5 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.7.5 locally



ubuntu@ip-10-0-1-48:~$ nvidia-smi
Thu Mar 30 05:45:26 2017       
+------------------------------------------------------+                       
| NVIDIA-SMI 346.46     Driver Version: 346.46         |                       
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GRID K520           Off  | 0000:00:03.0     Off |                  N/A |
| N/A   35C    P0    38W / 125W |     10MiB /  4095MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

Answer

nuicca picture nuicca · Jun 30, 2018

I solved "NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver" on my ASUS laptop with GTX 950m and Ubuntu 18.04 by disabling Secure Boot Control from BIOS.