This is a good example of workers & controller mode in Go written by @Jimt, in answer to "Is there some elegant way to pause & resume any other goroutine in golang?"
package main
import (
"fmt"
"runtime"
"sync"
"time"
)
// Possible worker states.
const (
Stopped = 0
Paused = 1
Running = 2
)
// Maximum number of workers.
const WorkerCount = 1000
func main() {
// Launch workers.
var wg sync.WaitGroup
wg.Add(WorkerCount + 1)
workers := make([]chan int, WorkerCount)
for i := range workers {
workers[i] = make(chan int)
go func(i int) {
worker(i, workers[i])
wg.Done()
}(i)
}
// Launch controller routine.
go func() {
controller(workers)
wg.Done()
}()
// Wait for all goroutines to finish.
wg.Wait()
}
func worker(id int, ws <-chan int) {
state := Paused // Begin in the paused state.
for {
select {
case state = <-ws:
switch state {
case Stopped:
fmt.Printf("Worker %d: Stopped\n", id)
return
case Running:
fmt.Printf("Worker %d: Running\n", id)
case Paused:
fmt.Printf("Worker %d: Paused\n", id)
}
default:
// We use runtime.Gosched() to prevent a deadlock in this case.
// It will not be needed of work is performed here which yields
// to the scheduler.
runtime.Gosched()
if state == Paused {
break
}
// Do actual work here.
}
}
}
// controller handles the current state of all workers. They can be
// instructed to be either running, paused or stopped entirely.
func controller(workers []chan int) {
// Start workers
for i := range workers {
workers[i] <- Running
}
// Pause workers.
<-time.After(1e9)
for i := range workers {
workers[i] <- Paused
}
// Unpause workers.
<-time.After(1e9)
for i := range workers {
workers[i] <- Running
}
// Shutdown workers.
<-time.After(1e9)
for i := range workers {
close(workers[i])
}
}
But this code also has an issue: If you want to remove a worker channel in workers
when worker()
exits, dead lock happens.
If you close(workers[i])
, next time controller writes into it will cause a panic since go can't write into a closed channel. If you use some mutex to protect it, then it will be stuck on workers[i] <- Running
since the worker
is not reading anything from the channel and write will be blocked, and mutex will cause a dead lock. You can also give a bigger buffer to channel as a work-around, but it's not good enough.
So I think the best way to solve this is worker()
close channel when exits, if the controller finds a channel closed, it will jump over it and do nothing. But I can't find how to check a channel is already closed or not in this situation. If I try to read the channel in controller, the controller might be blocked. So I'm very confused for now.
PS: Recovering the raised panic is what I have tried, but it will close goroutine which raised panic. In this case it will be controller so it's no use.
Still, I think it's useful for Go team to implement this function in next version of Go.
There's no way to write a safe application where you need to know whether a channel is open without interacting with it.
The best way to do what you're wanting to do is with two channels -- one for the work and one to indicate a desire to change state (as well as the completion of that state change if that's important).
Channels are cheap. Complex design overloading semantics isn't.
[also]
<-time.After(1e9)
is a really confusing and non-obvious way to write
time.Sleep(time.Second)
Keep things simple and everyone (including you) can understand them.