What is Crossover Probability & Mutation Probability in Genetic Algorithm or Genetic Programming ? Could someone explain them from implementation perspective!
Mutation probability (or ratio) is basically a measure of the likeness that random elements of your chromosome will be flipped into something else. For example if your chromosome is encoded as a binary string of lenght 100 if you have 1% mutation probability it means that 1 out of your 100 bits (on average) picked at random will be flipped.
Crossover basically simulates sexual genetic recombination (as in human reproduction) and there are a number of ways it is usually implemented in GAs. Sometimes crossover is applied with moderation in GAs (as it breaks symmetry, which is not always good, and you could also go blind) so we talk about crossover probability to indicate a ratio of how many couples will be picked for mating (they are usually picked by following selection criteria - but that's another story).
This is the short story - if you want the long one you'll have to make an effort and follow the link Amber posted. Or do some googling - which last time I checked was still a good option too :)