According to Intel's Software Developer Manual (sec. 14.9), AVX relaxed the alignment requirements of memory accesses. If data is loaded directly in a processing instruction, e.g.
vaddps ymm0,ymm0,YMMWORD PTR [rax]
the load address doesn't have to be aligned. However, if a dedicated aligned load instruction is used, such as
vmovaps ymm0,YMMWORD PTR [rax]
the load address has to be aligned (to multiples of 32), otherwise an exception is raised.
What confuses me is the automatic code generation from intrinsics, in my case by gcc/g++ (4.6.3, Linux). Please have a look at the following test code:
#include <x86intrin.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#define SIZE (1L << 26)
#define OFFSET 1
int main() {
float *data;
assert(!posix_memalign((void**)&data, 32, SIZE*sizeof(float)));
for (unsigned i = 0; i < SIZE; i++) data[i] = drand48();
float res[8] __attribute__ ((aligned(32)));
__m256 sum = _mm256_setzero_ps(), elem;
for (float *d = data + OFFSET; d < data + SIZE - 8; d += 8) {
elem = _mm256_load_ps(d);
// sum = _mm256_add_ps(elem, elem);
sum = _mm256_add_ps(sum, elem);
}
_mm256_store_ps(res, sum);
for (int i = 0; i < 8; i++) printf("%g ", res[i]); printf("\n");
return 0;
}
(Yes, I know the code is faulty, since I use an aligned load on unaligned addresses, but bear with me...)
I compile the code with
g++ -Wall -O3 -march=native -o memtest memtest.C
on a CPU with AVX. If I check the code generated by g++ by using
objdump -S -M intel-mnemonic memtest | more
I see that the compiler does not generate an aligned load instruction, but loads the data directly in the vector addition instruction:
vaddps ymm0,ymm0,YMMWORD PTR [rax]
The code executes without any problem, even though the memory addresses are not aligned (OFFSET is 1). This is clear since vaddps tolerates unaligned addresses.
If I uncomment the line with the second addition intrinsic, the compiler cannot fuse the load and the addition since vaddps can only have a single memory source operand, and generates:
vmovaps ymm0,YMMWORD PTR [rax]
vaddps ymm1,ymm0,ymm0
vaddps ymm0,ymm1,ymm0
And now the program seg-faults, since a dedicated aligned load instruction is used, but the memory address is not aligned. (The program doesn't seg-fault if I use _mm256_loadu_ps, or if I set OFFSET to 0, by the way.)
This leaves the programmer at the mercy of the compiler and makes the behavior partly unpredictable, in my humble opinion.
My question is: Is there a way to force the C compiler to either generate a direct load in a processing instruction (such as vaddps) or to generate a dedicated load instruction (such as vmovaps)?
There is no way to explicitly control folding of loads with intrinsics. I consider this a weakness of intrinsics. If you want to explicitly control the folding then you have to use assembly.
In previous version of GCC I was able to control the folding to some degree using an aligned or unaligned load. However, that no longer appears to be the case (GCC 4.9.2). I mean for example in the function AddDot4x4_vec_block_8wide
here the loads are folded
vmulps ymm9, ymm0, YMMWORD PTR [rax-256]
vaddps ymm8, ymm9, ymm8
However in a previous verison of GCC the loads were not folded:
vmovups ymm9, YMMWORD PTR [rax-256]
vmulps ymm9, ymm0, ymm9
vaddps ymm8, ymm8, ymm9
The correct solution is, obviously, to only used aligned loads when you know the data is aligned and if you really want to explicitly control the folding use assembly.