Which of them are preferred in which circumstances?
I'd like to see the list of evaluation crtieria for the various modes, and maybe a discussion of the applicability of each criterion.
For example, I think one of the criteria is "size of the code" for encryption and decryption, which is important for micro-code embedded systems, like 802.11 network adapters. IF the code required to implement CBC is much smaller than that required for CTR (I don't know this is true, it's just an example), then I could understand why the mode with the smaller code would be preferred. But if I am writing an app that runs on a server, and the AES library I am using implements both CBC and CTR anyway, then this criterion is irrelevant.
See what I mean by "list of evaluation criteria and applicability of each criterion" ??
This isn't really programming related but it is algorithm related.
The ugly truth of the matter is that if you are asking this question you will probably not be able to design and implement a secure system.
Let me illustrate my point: Imagine you are building a web application and you need to store some session data. You could assign each user a session ID and store the session data on the server in a hash map mapping session ID to session data. But then you have to deal with this pesky state on the server and if at some point you need more than one server things will get messy. So instead you have the idea to store the session data in a cookie on the client side. You will encrypt it of course so the user cannot read and manipulate the data. So what mode should you use? Coming here you read the top answer (sorry for singling you out myforwik). The first one covered - ECB - is not for you, you want to encrypt more than one block, the next one - CBC - sounds good and you don't need the parallelism of CTR, you don't need random access, so no XTS and patents are a PITA, so no OCB. Using your crypto library you realize that you need some padding because you can only encrypt multiples of the block size. You choose PKCS7 because it was defined in some serious cryptography standards. After reading somewhere that CBC is provably secure if used with a random IV and a secure block cipher, you rest at ease even though you are storing your sensitive data on the client side.
Years later after your service has indeed grown to significant size, an IT security specialist contacts you in a responsible disclosure. She's telling you that she can decrypt all your cookies using a padding oracle attack, because your code produces an error page if the padding is somehow broken.
This is not a hypothetical scenario: Microsoft had this exact flaw in ASP.NET until a few years ago.
The problem is there are a lot of pitfalls regarding cryptography and it is extremely easy to build a system that looks secure for the layman but is trivial to break for a knowledgeable attacker.
For live connections use TLS (be sure to check the hostname of the certificate and the issuer chain). If you can't use TLS, look for the highest level API your system has to offer for your task and be sure you understand the guarantees it offers and more important what it does not guarantee. For the example above a framework like Play offers client side storage facilities, it does not invalidate the stored data after some time, though, and if you changed the client side state, an attacker can restore a previous state without you noticing.
If there is no high level abstraction available use a high level crypto library. A prominent example is NaCl and a portable implementation with many language bindings is Sodium. Using such a library you do not have to care about encryption modes etc. but you have to be even more careful about the usage details than with a higher level abstraction, like never using a nonce twice.
If for some reason you cannot use a high level crypto library, for example because you need to interact with existing system in a specific way, there is no way around educating yourself thoroughly. I recommend reading Cryptography Engineering by Ferguson, Kohno and Schneier. Please don't fool yourself into believing you can build a secure system without the necessary background. Cryptography is extremely subtle and it's nigh impossible to test the security of a system.
To prevent padding oracle attacks and changes to the ciphertext, one can compute a message authentication code (MAC) on the ciphertext and only decrypt it if it has not been tampered with. This is called encrypt-then-mac and should be preferred to any other order. Except for very few use cases authenticity is as important as confidentiality (the latter of which is the aim of encryption). Authenticated encryption schemes (with associated data (AEAD)) combine the two part process of encryption and authentication into one block cipher mode that also produces an authentication tag in the process. In most cases this results in speed improvement.
Considering the importance of authentication I would recommend the following two block cipher modes for most use cases (except for disk encryption purposes): If the data is authenticated by an asymmetric signature use CBC, otherwise use GCM.