I am Looking for the best way to group data in elasticsearch. Elasticsearch doesn't support something like 'group by' in sql.
Lets say I have 1k categories and millions of products. What do you think is the best way to render a complete category tree? Off course you need some metadata (icon, link-target, seo-titles,...) and custom sorting for the categories.
Using Aggregations: Example: https://found.no/play/gist/8124563 Looks usable if you have to group by one field, and need some extra fields.
Using multiple Fields in a Facet (won't work): Example: https://found.no/play/gist/1aa44e2114975384a7c2 Here we lose the relationship between the different fields.
Building funny Facets: https://found.no/play/gist/8124810
For example, building a category tree using these 3 "solutions" sucks. Solution 1 May work (ES 1 isn't stable right now) Solution 2 Doesn't work Solution 3 Is a pain because it feels ugly, you need to prepare a lot of data and the facets blow up.
Maybe an alternative could be not to store any category data in ES, just the id https://found.no/play/gist/a53e46c91e2bf077f2e1
Then you could get the associated category from another system, like redis, memcache or the database.
This would end up in clean code, but the performance could become a problem. For example loading, 1k Categories from Memcache / Redis / a database could be slow. Another problem is that syncing 2 database is harder than syncing one.
How do you deal with such problems?
I am sorry for the links, but I can't post more than 2 in one article.
The aggregations API allows grouping by multiple fields, using sub-aggregations. Suppose you want to group by fields field1
, field2
and field3
:
{
"aggs": {
"agg1": {
"terms": {
"field": "field1"
},
"aggs": {
"agg2": {
"terms": {
"field": "field2"
},
"aggs": {
"agg3": {
"terms": {
"field": "field3"
}
}
}
}
}
}
}
}
Of course this can go on for as many fields as you'd like.
Update:
For completeness, here is how the output of the above query looks. Also below is python code for generating the aggregation query and flattening the result into a list of dictionaries.
{
"aggregations": {
"agg1": {
"buckets": [{
"doc_count": <count>,
"key": <value of field1>,
"agg2": {
"buckets": [{
"doc_count": <count>,
"key": <value of field2>,
"agg3": {
"buckets": [{
"doc_count": <count>,
"key": <value of field3>
},
{
"doc_count": <count>,
"key": <value of field3>
}, ...
]
},
{
"doc_count": <count>,
"key": <value of field2>,
"agg3": {
"buckets": [{
"doc_count": <count>,
"key": <value of field3>
},
{
"doc_count": <count>,
"key": <value of field3>
}, ...
]
}, ...
]
},
{
"doc_count": <count>,
"key": <value of field1>,
"agg2": {
"buckets": [{
"doc_count": <count>,
"key": <value of field2>,
"agg3": {
"buckets": [{
"doc_count": <count>,
"key": <value of field3>
},
{
"doc_count": <count>,
"key": <value of field3>
}, ...
]
},
{
"doc_count": <count>,
"key": <value of field2>,
"agg3": {
"buckets": [{
"doc_count": <count>,
"key": <value of field3>
},
{
"doc_count": <count>,
"key": <value of field3>
}, ...
]
}, ...
]
}, ...
]
}
}
}
The following python code performs the group-by given the list of fields. I you specify include_missing=True
, it also includes combinations of values where some of the fields are missing (you don't need it if you have version 2.0 of Elasticsearch thanks to this)
def group_by(es, fields, include_missing):
current_level_terms = {'terms': {'field': fields[0]}}
agg_spec = {fields[0]: current_level_terms}
if include_missing:
current_level_missing = {'missing': {'field': fields[0]}}
agg_spec[fields[0] + '_missing'] = current_level_missing
for field in fields[1:]:
next_level_terms = {'terms': {'field': field}}
current_level_terms['aggs'] = {
field: next_level_terms,
}
if include_missing:
next_level_missing = {'missing': {'field': field}}
current_level_terms['aggs'][field + '_missing'] = next_level_missing
current_level_missing['aggs'] = {
field: next_level_terms,
field + '_missing': next_level_missing,
}
current_level_missing = next_level_missing
current_level_terms = next_level_terms
agg_result = es.search(body={'aggs': agg_spec})['aggregations']
return get_docs_from_agg_result(agg_result, fields, include_missing)
def get_docs_from_agg_result(agg_result, fields, include_missing):
current_field = fields[0]
buckets = agg_result[current_field]['buckets']
if include_missing:
buckets.append(agg_result[(current_field + '_missing')])
if len(fields) == 1:
return [
{
current_field: bucket.get('key'),
'doc_count': bucket['doc_count'],
}
for bucket in buckets if bucket['doc_count'] > 0
]
result = []
for bucket in buckets:
records = get_docs_from_agg_result(bucket, fields[1:], include_missing)
value = bucket.get('key')
for record in records:
record[current_field] = value
result.extend(records)
return result