I have a PySpark dataframe which contains an ID and then a couple of variables for which I want to calculate the 95% point.
Part of the printSchema():
root
|-- ID: string (nullable = true)
|-- MOU_G_EDUCATION_ADULT: double (nullable = false)
|-- MOU_G_EDUCATION_KIDS: double (nullable = false)
I found How to derive Percentile using Spark Data frame and GroupBy in python, but this fails with an error message:
perc95_udf = udf(lambda x: x.quantile(.95))
fanscores = genres.withColumn("P95_MOU_G_EDUCATION_ADULT", perc95_udf('MOU_G_EDUCATION_ADULT')) \
.withColumn("P95_MOU_G_EDUCATION_KIDS", perc95_udf('MOU_G_EDUCATION_KIDS'))
fanscores.take(2)
AttributeError: 'float' object has no attribute 'quantile'
Other UDF trials I already tried:
def percentile(quantiel,kolom):
x=np.array(kolom)
perc=np.percentile(x, quantiel)
return perc
percentile_udf = udf(percentile, LongType())
fanscores = genres.withColumn("P95_MOU_G_EDUCATION_ADULT", percentile_udf(quantiel=95, kolom=genres.MOU_G_EDUCATION_ADULT)) \
.withColumn("P95_MOU_G_EDUCATION_KIDS", percentile_udf(quantiel=95, kolom=genres.MOU_G_EDUCATION_KIDS))
fanscores.take(2)
gives the error: "TypeError: wrapper() got an unexpected keyword argument 'quantiel'"
My final trial:
import numpy as np
def percentile(quantiel):
return udf(lambda kolom: np.percentile(np.array(kolom), quantiel))
fanscores = genres.withColumn("P95_MOU_G_EDUCATION_ADULT", percentile(quantiel=95)(genres.MOU_G_EDUCATION_ADULT)) \
.withColumn("P95_MOU_G_EDUCATION_KIDS", percentile(quantiel=95) (genres.MOU_G_EDUCATION_KIDS))
fanscores.take(2)
Gives the error:
PickleException: expected zero arguments for construction of ClassDict (for numpy.dtype)
How could I solve this ?
df.selectExpr('percentile(MOU_G_EDUCATION_ADULT, 0.95)').show()
for large datasets consider using percentile_approx()