the normal output of nvidia-smi looks like this:
Thu May 10 09:05:07 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.111 Driver Version: 384.111 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 108... Off | 00000000:0A:00.0 Off | N/A |
| 61% 74C P2 195W / 250W | 5409MiB / 11172MiB | 100% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 5973 C ...master_JPG/build/tools/program_pytho.bin 4862MiB |
| 0 46324 C python 537MiB |
+-----------------------------------------------------------------------------+
As you can see it shows the list of PIDs which are running the CPU. However I also want to know the names of the PIDs. Can I customize the output to show the username of each PID ? I already know how to show username of individual PID:
ps -u -p $pid
Please help me. Thank you very much.
UPDATE: I've posted the solution that worked for me below. I've also uploaded this to Github as a simple script for those who need detailed GPU information:
I created a script that takes nvidia-smi output and enriches it with some more information: https://github.com/peci1/nvidia-htop .
It is a python script that parses the GPU process list, parses the PIDs, runs them through ps
to gather more information, and then substitutes the nvidia-smi
's process list with the enriched listing.
Example of use:
$ nvidia-smi | nvidia-htop.py -l
Mon May 21 15:06:35 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.25 Driver Version: 390.25 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 108... Off | 00000000:04:00.0 Off | N/A |
| 53% 75C P2 174W / 250W | 10807MiB / 11178MiB | 97% Default |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX 108... Off | 00000000:05:00.0 Off | N/A |
| 66% 82C P2 220W / 250W | 10783MiB / 11178MiB | 100% Default |
+-------------------------------+----------------------+----------------------+
| 2 GeForce GTX 108... Off | 00000000:08:00.0 Off | N/A |
| 45% 67C P2 85W / 250W | 10793MiB / 11178MiB | 51% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| GPU PID USER GPU MEM %MEM %CPU COMMAND |
| 0 1032 anonymou 10781MiB 308 3.7 python train_image_classifier.py --train_dir=/mnt/xxxxxxxx/xxxxxxxx/xxxxxxxx/xxxxxxx/xxxxxxxxxxxxxxx |
| 1 11021 cannotte 10765MiB 114 1.5 python3 ./train.py --flagfile /xxxxxxxx/xxxxxxxx/xxxxxxxx/xxxxxxxxx/xx/xxxxxxxxxxxxxxx |
| 2 25544 nevermin 10775MiB 108 2.0 python -m xxxxxxxxxxxxxxxxxxxxxxxxxxxxx |
+-----------------------------------------------------------------------------+