Can you help me to convert lla to xyz coordnates.
I am using
earthRadius = 6378.137;
var x = earthRadius * Math.cos(lat)*Math.cos(lon);
var y = earthRadius * Math.cos(lat)*Math.sin(lon);
var z = earthRadius * Math.sin(lat);
this method to convert to xyz coordinates. But it does not give the correct result I want. Earth is defined as wgs84 object.
Complete Coordinate Transformation (python code):
geodetic -> ECEF
(earth centered earth fixed), distances from the center of the earth
ECEF -> ENU
(East North Up), to obtain local typical x-y
trajectory:
import pyproj, math
R = 6378137
f_inv = 298.257224
f = 1.0 / f_inv
e2 = 1 - (1 - f) * (1 - f)
# Sample (Lat, Lng, Alt)
ex_LLA = [
(0, 45, 1000),
(45, 90, 2000),
(48.8567, 2.3508, 80),
(61.4140105652, 23.7281341313, 149.821),
(51.760597, -1.261247, 114.284188),
]
def gps2ecef_pyproj(lat, lon, alt):
ecef = pyproj.Proj(proj='geocent', ellps='WGS84', datum='WGS84')
lla = pyproj.Proj(proj='latlong', ellps='WGS84', datum='WGS84')
x, y, z = pyproj.transform(lla, ecef, lon, lat, alt, radians=False)
return x, y, z
def gps2ecef_custom(latitude, longitude, altitude):
# (lat, lon) in WSG-84 degrees
# altitude in meters
cosLat = math.cos(latitude * math.pi / 180)
sinLat = math.sin(latitude * math.pi / 180)
cosLong = math.cos(longitude * math.pi / 180)
sinLong = math.sin(longitude * math.pi / 180)
c = 1 / math.sqrt(cosLat * cosLat + (1 - f) * (1 - f) * sinLat * sinLat)
s = (1 - f) * (1 - f) * c
x = (R*c + altitude) * cosLat * cosLong
y = (R*c + altitude) * cosLat * sinLong
z = (R*s + altitude) * sinLat
return x, y, z
def ecef_to_enu(x, y, z, latRef, longRef, altRef):
cosLatRef = math.cos(latRef * math.pi / 180)
sinLatRef = math.sin(latRef * math.pi / 180)
cosLongRef = math.cos(longRef * math.pi / 180)
sinLongRef = math.sin(longRef * math.pi / 180)
cRef = 1 / math.sqrt(cosLatRef * cosLatRef + (1 - f) * (1 - f) * sinLatRef * sinLatRef)
x0 = (R*cRef + altRef) * cosLatRef * cosLongRef
y0 = (R*cRef + altRef) * cosLatRef * sinLongRef
z0 = (R*cRef*(1-e2) + altRef) * sinLatRef
xEast = (-(x-x0) * sinLongRef) + ((y-y0)*cosLongRef)
yNorth = (-cosLongRef*sinLatRef*(x-x0)) - (sinLatRef*sinLongRef*(y-y0)) + (cosLatRef*(z-z0))
zUp = (cosLatRef*cosLongRef*(x-x0)) + (cosLatRef*sinLongRef*(y-y0)) + (sinLatRef*(z-z0))
return xEast, yNorth, zUp
# Geodetic Coordinates (Latitude, Longitude, Altitude)
def geodetic_to_enu(lat, lon, h, lat_ref, lon_ref, h_ref):
x, y, z = gps2ecef_custom(lat, lon, h)
return ecef_to_enu(x, y, z, lat_ref, lon_ref, h_ref)
def geodetic_to_enu(qu_LLA, rf_LLA):
ECEF = gps2ecef_custom(qu_LLA)
ENU = ecef_to_enu(ECEF, rf_LLA)
return ENU
def run_test():
for pt in ex_LLA:
xPy,yPy,zPy = gps2ecef_pyproj(pt[0], pt[1], pt[2])
xF,yF,zF = gps2ecef_custom(pt[0], pt[1], pt[2])
xE, yN, zU = ecef_to_enu(xF,yF,zF, pt[0], pt[1], pt[2])
print('\n>>> LLA: {}'.format(pt))
print(">> pyproj (XYZ)\t = ", xPy, yPy, zPy)
print(">> ECEF (XYZ)\t = ", xF, yF, zF)
print('>> ENU (XYZ) \t = ', xE, yN, zU)
print('-'*100)
if __name__ == "__main__":
run_test()
The difference between geodetic -> ECEF
and ECEF -> ENU
is illustrated in the two following figures: