Updated: This question contains an error which makes the benchmark meaningless. I will attempt a better benchmark comparing F# and Erlang's basic concurrency functionality and inquire about the results in another question.
I am trying do understand the performance characteristics of Erlang and F#. I find Erlang's concurrency model very appealing but am inclined to use F# for interoperability reasons. While out of the box F# doesn't offer anything like Erlang's concurrency primitives -- from what I can tell async and MailboxProcessor only cover a small portion of what Erlang does well -- I've been trying to understand what is possible in F# performance wise.
In Joe Armstrong's Programming Erlang book, he makes the point that processes are very cheap in Erlang. He uses the (roughly) the following code to demonstrate this fact:
-module(processes).
-export([max/1]).
%% max(N)
%% Create N processes then destroy them
%% See how much time this takes
max(N) ->
statistics(runtime),
statistics(wall_clock),
L = for(1, N, fun() -> spawn(fun() -> wait() end) end),
{_, Time1} = statistics(runtime),
{_, Time2} = statistics(wall_clock),
lists:foreach(fun(Pid) -> Pid ! die end, L),
U1 = Time1 * 1000 / N,
U2 = Time2 * 1000 / N,
io:format("Process spawn time=~p (~p) microseconds~n",
[U1, U2]).
wait() ->
receive
die -> void
end.
for(N, N, F) -> [F()];
for(I, N, F) -> [F()|for(I+1, N, F)].
On my Macbook Pro, spawning and killing 100 thousand processes (processes:max(100000)
) takes about 8 microseconds per processes. I can raise the number of processes a bit further, but a million seems to break things pretty consistently.
Knowing very little F#, I tried to implement this example using async and MailBoxProcessor. My attempt, which may be wrong, is as follows:
#r "System.dll"
open System.Diagnostics
type waitMsg =
| Die
let wait =
MailboxProcessor.Start(fun inbox ->
let rec loop =
async { let! msg = inbox.Receive()
match msg with
| Die -> return() }
loop)
let max N =
printfn "Started!"
let stopwatch = new Stopwatch()
stopwatch.Start()
let actors = [for i in 1 .. N do yield wait]
for actor in actors do
actor.Post(Die)
stopwatch.Stop()
printfn "Process spawn time=%f microseconds." (stopwatch.Elapsed.TotalMilliseconds * 1000.0 / float(N))
printfn "Done."
Using F# on Mono, starting and killing 100,000 actors/processors takes under 2 microseconds per process, roughly 4 times faster than Erlang. More importantly, perhaps, is that I can scale up to millions of processes without any apparent problems. Starting 1 or 2 million processes still takes about 2 microseconds per process. Starting 20 million processors is still feasible, but slows to about 6 microseconds per process.
I have not yet taken the time to fully understand how F# implements async and MailBoxProcessor, but these results are encouraging. Is there something I'm doing horribly wrong?
If not, is there some place Erlang will likely outperform F#? Is there any reason Erlang's concurrency primitives can't be brought to F# through a library?
EDIT: The above numbers are wrong, due to the error Brian pointed out. I will update the entire question when I fix it.
In your original code, you only started one MailboxProcessor. Make wait()
a function, and call it with each yield
. Also you are not waiting for them to spin up or receive the messages, which I think invalidates the timing info; see my code below.
That said, I have some success; on my box I can do 100,000 at about 25us each. After too much more, I think possibly you start fighting the allocator/GC as much as anything, but I was able to do a million too (at about 27us each, but at this point was using like 1.5G of memory).
Basically each 'suspended async' (which is the state when a mailbox is waiting on a line like
let! msg = inbox.Receive()
) only takes some number of bytes while it's blocked. That's why you can have way, way, way more asyncs than threads; a thread typically takes like a megabyte of memory or more.
Ok, here's the code I'm using. You can use a small number like 10, and --define DEBUG to ensure the program semantics are what is desired (printf outputs may be interleaved, but you'll get the idea).
open System.Diagnostics
let MAX = 100000
type waitMsg =
| Die
let mutable countDown = MAX
let mre = new System.Threading.ManualResetEvent(false)
let wait(i) =
MailboxProcessor.Start(fun inbox ->
let rec loop =
async {
#if DEBUG
printfn "I am mbox #%d" i
#endif
if System.Threading.Interlocked.Decrement(&countDown) = 0 then
mre.Set() |> ignore
let! msg = inbox.Receive()
match msg with
| Die ->
#if DEBUG
printfn "mbox #%d died" i
#endif
if System.Threading.Interlocked.Decrement(&countDown) = 0 then
mre.Set() |> ignore
return() }
loop)
let max N =
printfn "Started!"
let stopwatch = new Stopwatch()
stopwatch.Start()
let actors = [for i in 1 .. N do yield wait(i)]
mre.WaitOne() |> ignore // ensure they have all spun up
mre.Reset() |> ignore
countDown <- MAX
for actor in actors do
actor.Post(Die)
mre.WaitOne() |> ignore // ensure they have all got the message
stopwatch.Stop()
printfn "Process spawn time=%f microseconds." (stopwatch.Elapsed.TotalMilliseconds * 1000.0 / float(N))
printfn "Done."
max MAX
All this said, I don't know Erlang, and I have not thought deeply about whether there's a way to trim down the F# any more (though it's pretty idiomatic as-is).