how to compile opencl project with kernels

wallen picture wallen · Oct 22, 2014 · Viewed 21k times · Source

I am totally a beginner on opencl, I searched around the internet and found some "helloworld" demos for opencl project. Usually in such sort of minimal project, there is a *.cl file contains some sort of opencl kernels and a *.c file contains the main function. Then the question is how do I compile this kind of project use a command line. I know I should use some sort of -lOpenCL flag on linux and -framework OpenCL on mac. But I have no idea to link the *.cl kernel to my main source file. Thank you for any comments or useful links.

Answer

Farzad picture Farzad · Oct 23, 2014

In OpenCL, the .cl files that contain device kernel codes are usually being compiled and built at run-time. It means somewhere in your host OpenCL program, you'll have to compile and build your device program to be able to use it. This feature enables maximum portability.

Let's consider an example I collected from two books. Below is a very simple OpenCL kernel adding two numbers from two global arrays and saving them in another global array. I save this code in a file named vector_add_kernel.cl.

kernel void vecadd( global int* A, global int* B, global int* C ) {
    const int idx = get_global_id(0);
    C[idx] = A[idx] + B[idx];
}

Below is the host code written in C++ that exploits OpenCL C++ API. I save it in a file named ocl_vector_addition.cpp beside where I saved my .cl file.

#include <iostream>
#include <fstream>
#include <string>
#include <memory>
#include <stdlib.h>

#define __CL_ENABLE_EXCEPTIONS
#if defined(__APPLE__) || defined(__MACOSX)
#include <OpenCL/cl.cpp>
#else
#include <CL/cl.hpp>
#endif

int main( int argc, char** argv ) {

    const int N_ELEMENTS=1024*1024;
    unsigned int platform_id=0, device_id=0;

    try{
        std::unique_ptr<int[]> A(new int[N_ELEMENTS]); // Or you can use simple dynamic arrays like: int* A = new int[N_ELEMENTS];
        std::unique_ptr<int[]> B(new int[N_ELEMENTS]);
        std::unique_ptr<int[]> C(new int[N_ELEMENTS]);

        for( int i = 0; i < N_ELEMENTS; ++i ) {
            A[i] = i;
            B[i] = i;
        }

        // Query for platforms
        std::vector<cl::Platform> platforms;
        cl::Platform::get(&platforms);

        // Get a list of devices on this platform
        std::vector<cl::Device> devices;
        platforms[platform_id].getDevices(CL_DEVICE_TYPE_GPU|CL_DEVICE_TYPE_CPU, &devices); // Select the platform.

        // Create a context
        cl::Context context(devices);

        // Create a command queue
        cl::CommandQueue queue = cl::CommandQueue( context, devices[device_id] );   // Select the device.

        // Create the memory buffers
        cl::Buffer bufferA=cl::Buffer(context, CL_MEM_READ_ONLY, N_ELEMENTS * sizeof(int));
        cl::Buffer bufferB=cl::Buffer(context, CL_MEM_READ_ONLY, N_ELEMENTS * sizeof(int));
        cl::Buffer bufferC=cl::Buffer(context, CL_MEM_WRITE_ONLY, N_ELEMENTS * sizeof(int));

        // Copy the input data to the input buffers using the command queue.
        queue.enqueueWriteBuffer( bufferA, CL_FALSE, 0, N_ELEMENTS * sizeof(int), A.get() );
        queue.enqueueWriteBuffer( bufferB, CL_FALSE, 0, N_ELEMENTS * sizeof(int), B.get() );

        // Read the program source
        std::ifstream sourceFile("vector_add_kernel.cl");
        std::string sourceCode( std::istreambuf_iterator<char>(sourceFile), (std::istreambuf_iterator<char>()));
        cl::Program::Sources source(1, std::make_pair(sourceCode.c_str(), sourceCode.length()));

        // Make program from the source code
        cl::Program program=cl::Program(context, source);

        // Build the program for the devices
        program.build(devices);

        // Make kernel
        cl::Kernel vecadd_kernel(program, "vecadd");

        // Set the kernel arguments
        vecadd_kernel.setArg( 0, bufferA );
        vecadd_kernel.setArg( 1, bufferB );
        vecadd_kernel.setArg( 2, bufferC );

        // Execute the kernel
        cl::NDRange global( N_ELEMENTS );
        cl::NDRange local( 256 );
        queue.enqueueNDRangeKernel( vecadd_kernel, cl::NullRange, global, local );

        // Copy the output data back to the host
        queue.enqueueReadBuffer( bufferC, CL_TRUE, 0, N_ELEMENTS * sizeof(int), C.get() );

        // Verify the result
        bool result=true;
        for (int i=0; i<N_ELEMENTS; i ++)
            if (C[i] !=A[i]+B[i]) {
                result=false;
                break;
            }
        if (result)
            std::cout<< "Success!\n";
        else
            std::cout<< "Failed!\n";

    }
    catch(cl::Error err) {
        std::cout << "Error: " << err.what() << "(" << err.err() << ")" << std::endl;
        return( EXIT_FAILURE );
    }

    std::cout << "Done.\n";
    return( EXIT_SUCCESS );
}

I compile this code on a machine with Ubuntu 12.04 like this:

g++ ocl_vector_addition.cpp -lOpenCL -std=c++11 -o ocl_vector_addition.o

It produces a ocl_vector_addition.o, which when I run, shows successful output. If you look at the compilation command, you see we have not passed anything about our .cl file. We only have used -lOpenCL flag to enable OpenCL library for our program. Also, don't get distracted by -std=c++11 command. Because I used std::unique_ptr in the host code, I had to use this flag for a successful compile.

So where is this .cl file being used? If you look at the host code, you'll find four parts that I repeat in below numbered:

// 1. Read the program source
std::ifstream sourceFile("vector_add_kernel.cl");
std::string sourceCode( std::istreambuf_iterator<char>(sourceFile), (std::istreambuf_iterator<char>()));
cl::Program::Sources source(1, std::make_pair(sourceCode.c_str(), sourceCode.length()));

// 2. Make program from the source code
cl::Program program=cl::Program(context, source);

// 3. Build the program for the devices
program.build(devices);

// 4. Make kernel
cl::Kernel vecadd_kernel(program, "vecadd");

In the 1st step, we read the content of the file that holds our device code and put it into a std::string named sourceCode. Then we make a pair of the string and its length and save it to source which has the type cl::Program::Sources. After we prepared the code, we make a cl::program object named program for the context and load the source code into the program object. The 3rd step is the one in which the OpenCL code gets compiled (and linked) for the device. Since the device code is built in the 3rd step, we can create a kernel object named vecadd_kernel and associate the kernel named vecadd inside it with our cl::kernel object. This was pretty much the set of steps involved in compiling a .cl file in a program.

The program I showed and explained about creates the device program from the kernel source code. Another option is to use binaries instead. Using binary program enhances application loading time and allows binary distribution of the program but limits portability since binaries that work fine on one device may not work on another device. Creating program using source code and binary are also called offline and online compilation respectively (more information here). I skip it here since the answer is already too long.