I am running a C program on an AVR chip. Whenever a serial signal is heard, it runs the serial interrupt ISR (USART_RX_vect). In this method it should turn on change to = 1;
. Then in my main while
loop, it should clear the LCD and display it and then set change = 0
again.
This is to stop it continually doing the calulations, and displaying the result on the LCD a million times a minute..
However, when the interrupt method changes the change variable to 1, it does not seem to change it "globally" and in the main method it is always 0..
There is a bit of stuff in here that is for debugging purposes.
/* LCD DEFINES */
#define LED PB5
#define output_low(port,pin) port &= ~(1<<pin)
#define output_high(port,pin) port |= (1<<pin)
#define set_input(portdir,pin) portdir &= ~(1<<pin)
#define set_output(portdir,pin) portdir |= (1<<pin)
/* UART SERIAL DEFINES */
#define F_CPU 16000000UL
#define BAUD 9600
#define MYUBRR F_CPU/16/BAUD-1
#define STARTCHAR 'R'
#define ENDCHAR 'E'
char reading;
char inputBuffer[12];
char readStatus;
uint8_t position;
int change;
char output;
int result;
struct Axis
{
uint8_t axisNumber;
uint16_t position;
uint16_t oldPosition;
} axis1, axis2, axis3;
/* SETUP UART */
void USART_Init( unsigned int ubrr)
{
/*Set baud rate */
UBRR0H = (unsigned char)(ubrr>>8);
UBRR0L = (unsigned char)ubrr;
/*Enable receiver and transmitter */
UCSR0B = (1<<RXEN0)|(1<<TXEN0);
/* Set frame format: 8data, 2stop bit */
UCSR0C = (1<<USBS0)|(3<<UCSZ00);
}
void USART_Transmit( unsigned char data )
{
UDR0 = data;
}
unsigned char USART_Receive( void )
{
return UDR0;
}
/*****************************************************************/
int main(void)
{
/* INITALISE SERIAL */
USART_Init(MYUBRR);
/* Turn on Receive Complete Interrupt */
UCSR0B |= (1 << RXCIE0);
/* Turn On GLobal Interrupts */
sei();
position = 0;
change = 0;
/* Initialise LCD */
lcd_init(LCD_DISP_ON); /* Initialize display, cursor off. */
lcd_clrscr();
lcd_puts("READY");
//Turn on LED 13
set_output(PORTB,LED);
output_low(PORTB,LED);
while (1) /* Loop forever */
{
if (change == 1)
{
//If not reading, display the result on the LCD display.
axis1.position = (inputBuffer[0]<< 8) | inputBuffer[1];
axis2.position = (inputBuffer[2]<< 8) | inputBuffer[3];
axis3.position = (inputBuffer[4]<< 8) | inputBuffer[5];
char axis1Printout[12];
char axis2Printout[12];
char axis3Printout[12];
sprintf(axis1Printout,"%u ", axis1.position);
sprintf(axis2Printout,"%u ", axis2.position);
sprintf(axis3Printout,"%u ", axis3.position);
char output[40] = "";
strcat(output, axis1Printout);
strcat(output, axis2Printout);
//strcat(output, axis3Printout);
lcd_clrscr(); /* Clear the screen*/
lcd_puts(output);
_delay_ms(300);
change = 0;
}
}
}
/* INTERRUPTS */
ISR (USART_RX_vect)
{
change = 1;
unsigned char input = USART_Receive();
if (input == 'R')
{
readStatus = 0; //Reading
position = 0;
}
else if ((input != 'E') && (position < 12) && (position > -1))
{
inputBuffer[position] = input;
position++;
}
else if (input == 'E')
{
readStatus = 1; //Stop Reading
position = -1;
output_high(PORTB,LED);
}
}
You need to declare change using the volatile keyword:
volatile int change;
This tells the two 'threads' (main execution loop and your ISR code) to not 'cache' the value in a register, but always retrieve it from memory.
Edit: There's another problem with the code - in your main loop, by the time you set changed to 0, you may have already had another interrupt which should have triggered your loop to run again. The easy-but-not-guaranteed fix is to immediately set changed to 0 straight after you check it. The proper way would be to use a lock - but depending on your situation, the first option might do.