What does it mean for a program to be 32 or 64 bit?

Zach Smith picture Zach Smith · May 17, 2019 · Viewed 10k times · Source

This question: How many bits does a WORD contain in 32/64 bit OS respectively?, mentions that word size refers to the bit size of a processor register - which i take to mean the number of bits that a computer processor operates on / i.e. the smallest 'indivisible' amount of bits that a processor operates on.

Is that correct? Using software like Word/Excel/etc, the installers have the option for a 32bit or a 64bit installation. What is the difference?

Since the computer architecture is fixed, it would seem to me that software that is '32 bit' would be designed to align with a computer architecture that has a 32 bit architecture. And a 64 bit program would make efforts to align instruction sets with 64 bit word sizes.

Is that correct?

A very similar question is asked here: From a programming point of view, what does it mean when a program is 32 or 64 bit? - and the accepted answer mentions that the difference is the amount of memory that can be allocated to an application. But this is too vague - unless 32 bit / 64 bit software as a concept is completely unrelated to 32 bit / 64 bit word processor size?

Answer

John Bollinger picture John Bollinger · May 17, 2019

The answer you reference describes benefits of 64-bit over 32-bit. As far as what's actually different about the program itself, it depends on your perspective.

Generally speaking, the program source code does not have to be different at all. Most programs can be written so that they compile perfectly well as either 32-bit or 64-bit programs, as controlled by appropriate choice of compiler and / or compiler options. There is often some impact on the source, however, in that a (C) compiler targeting 64-bit may choose to define its types differently. In particular, long int is ubiquitously 32 bits wide on 32-bit platforms, but it is 64 bits wide on many (but not all) 64-bit platforms. This can be a source of bugs in code that makes unwarranted assumptions about such details.

The main differences are all in the binary. 64-bit programs make use of the full instruction sets of their 64-bit target CPUs, which invariably contain instructions that 32-bit counterpart CPUs do not contain. They will use registers that 32-bit counterpart CPUs do not have. They will use function-call conventions appropriate for their target CPU, which often means passing more arguments in registers than 32-bit programs do. Use of these and other facilities of 64-bit CPUs affords functional advantages such as the ability to use more memory and (sometimes) improved performance.