How to disassemble the main function of a stripped application?

karlphillip picture karlphillip · Mar 29, 2011 · Viewed 26.6k times · Source

Let's say I compiled the application below and stripped it's symbols.

#include <stdio.h>

int main()
{
    printf("Hello\n");
}

Build procedure:

gcc -o hello hello.c
strip --strip-unneeded hello

If the application wasn't stripped, disassembling the main function would be easy. However, I have no idea how to disassemble the main function of a stripped application.

(gdb) disas main
No symbol table is loaded.  Use the "file" command.

(gdb) info line main
Function "main" not defined.

How could I do it? Is it even possible?

Notes: this must be done with GDB only. Forget objdump. Assume that I don't have access to the code.

A step-by-step example would be greatly appreciated.

Answer

DrBeco picture DrBeco · Apr 2, 2011

Ok, here a big edition of my previous answer. I think I found a way now.

You (still :) have this specific problem:

(gdb) disas main
No symbol table is loaded.  Use the "file" command.

Now, if you compile the code (I added a return 0 at the end), you will get with gcc -S:

    pushq   %rbp
    movq    %rsp, %rbp
    movl    $.LC0, %edi
    call    puts
    movl    $0, %eax
    leave
    ret

Now, you can see that your binary gives you some info:

Striped:

(gdb) info files
Symbols from "/home/beco/Documents/fontes/cpp/teste/stackoverflow/distrip".
Local exec file:
    `/home/beco/Documents/fontes/cpp/teste/stackoverflow/distrip', file type elf64-x86-64.
    Entry point: 0x400440
    0x0000000000400238 - 0x0000000000400254 is .interp
    ...
    0x00000000004003a8 - 0x00000000004003c0 is .rela.dyn
    0x00000000004003c0 - 0x00000000004003f0 is .rela.plt
    0x00000000004003f0 - 0x0000000000400408 is .init
    0x0000000000400408 - 0x0000000000400438 is .plt
    0x0000000000400440 - 0x0000000000400618 is .text
    ...
    0x0000000000601010 - 0x0000000000601020 is .data
    0x0000000000601020 - 0x0000000000601030 is .bss

The most important entry here is .text. It is a common name for a assembly start of code, and from our explanation of main bellow, from its size, you can see that it includes main. If you disassembly it, you will see a call to __libc_start_main. Most important, you are disassembling a good entry point that is real code (you are not misleading to change DATA to CODE).

disas 0x0000000000400440,0x0000000000400618
Dump of assembler code from 0x400440 to 0x400618:
   0x0000000000400440:  xor    %ebp,%ebp
   0x0000000000400442:  mov    %rdx,%r9
   0x0000000000400445:  pop    %rsi
   0x0000000000400446:  mov    %rsp,%rdx
   0x0000000000400449:  and    $0xfffffffffffffff0,%rsp
   0x000000000040044d:  push   %rax
   0x000000000040044e:  push   %rsp
   0x000000000040044f:  mov    $0x400540,%r8
   0x0000000000400456:  mov    $0x400550,%rcx
   0x000000000040045d:  mov    $0x400524,%rdi
   0x0000000000400464:  callq  0x400428 <__libc_start_main@plt>
   0x0000000000400469:  hlt
   ...

   0x000000000040046c:  sub    $0x8,%rsp
   ...
   0x0000000000400482:  retq   
   0x0000000000400483:  nop
   ...
   0x0000000000400490:  push   %rbp
   ..
   0x00000000004004f2:  leaveq 
   0x00000000004004f3:  retq   
   0x00000000004004f4:  data32 data32 nopw %cs:0x0(%rax,%rax,1)
   ...
   0x000000000040051d:  leaveq 
   0x000000000040051e:  jmpq   *%rax
   ...
   0x0000000000400520:  leaveq 
   0x0000000000400521:  retq   
   0x0000000000400522:  nop
   0x0000000000400523:  nop
   0x0000000000400524:  push   %rbp
   0x0000000000400525:  mov    %rsp,%rbp
   0x0000000000400528:  mov    $0x40062c,%edi
   0x000000000040052d:  callq  0x400418 <puts@plt>
   0x0000000000400532:  mov    $0x0,%eax
   0x0000000000400537:  leaveq 
   0x0000000000400538:  retq   

The call to __libc_start_main gets as its first argument a pointer to main(). So, the last argument in the stack just immediately before the call is your main() address.

   0x000000000040045d:  mov    $0x400524,%rdi
   0x0000000000400464:  callq  0x400428 <__libc_start_main@plt>

Here it is 0x400524 (as we already know). Now you set a breakpoint an try this:

(gdb) break *0x400524
Breakpoint 1 at 0x400524
(gdb) run
Starting program: /home/beco/Documents/fontes/cpp/teste/stackoverflow/disassembly/d2 

Breakpoint 1, 0x0000000000400524 in main ()
(gdb) n
Single stepping until exit from function main, 
which has no line number information.
hello 1
__libc_start_main (main=<value optimized out>, argc=<value optimized out>, ubp_av=<value optimized out>, 
    init=<value optimized out>, fini=<value optimized out>, rtld_fini=<value optimized out>, 
    stack_end=0x7fffffffdc38) at libc-start.c:258
258 libc-start.c: No such file or directory.
    in libc-start.c
(gdb) n

Program exited normally.
(gdb) 

Now you can disassembly it using:

(gdb) disas 0x0000000000400524,0x0000000000400600
Dump of assembler code from 0x400524 to 0x400600:
   0x0000000000400524:  push   %rbp
   0x0000000000400525:  mov    %rsp,%rbp
   0x0000000000400528:  sub    $0x10,%rsp
   0x000000000040052c:  movl   $0x1,-0x4(%rbp)
   0x0000000000400533:  mov    $0x40064c,%eax
   0x0000000000400538:  mov    -0x4(%rbp),%edx
   0x000000000040053b:  mov    %edx,%esi
   0x000000000040053d:  mov    %rax,%rdi
   0x0000000000400540:  mov    $0x0,%eax
   0x0000000000400545:  callq  0x400418 <printf@plt>
   0x000000000040054a:  mov    $0x0,%eax
   0x000000000040054f:  leaveq 
   0x0000000000400550:  retq   
   0x0000000000400551:  nop
   0x0000000000400552:  nop
   0x0000000000400553:  nop
   0x0000000000400554:  nop
   0x0000000000400555:  nop
   ...

This is primarily the solution.

BTW, this is a different code, to see if it works. That is why the assembly above is a bit different. The code above is from this c file:

#include <stdio.h>

int main(void)
{
    int i=1;
    printf("hello %d\n", i);
    return 0;
}

But!


if this does not work, then you still have some hints:

You should be looking to set breakpoints in the beginning of all functions from now on. They are just before a ret or leave. The first entry point is .text itself. This is the assembly start, but not the main.

The problem is that not always a breakpoint will let your program run. Like this one in the very .text:

(gdb) break *0x0000000000400440
Breakpoint 2 at 0x400440
(gdb) run
Starting program: /home/beco/Documents/fontes/cpp/teste/stackoverflow/disassembly/d2 

Breakpoint 2, 0x0000000000400440 in _start ()
(gdb) n
Single stepping until exit from function _start, 
which has no line number information.
0x0000000000400428 in __libc_start_main@plt ()
(gdb) n
Single stepping until exit from function __libc_start_main@plt, 
which has no line number information.
0x0000000000400408 in ?? ()
(gdb) n
Cannot find bounds of current function

So you need to keep trying until you find your way, setting breakpoints at:

0x400440
0x40046c
0x400490
0x4004f4
0x40051e
0x400524

From the other answer, we should keep this info:

In the non-striped version of the file, we see:

(gdb) disas main
Dump of assembler code for function main:
   0x0000000000400524 <+0>: push   %rbp
   0x0000000000400525 <+1>: mov    %rsp,%rbp
   0x0000000000400528 <+4>: mov    $0x40062c,%edi
   0x000000000040052d <+9>: callq  0x400418 <puts@plt>
   0x0000000000400532 <+14>:    mov    $0x0,%eax
   0x0000000000400537 <+19>:    leaveq 
   0x0000000000400538 <+20>:    retq   
End of assembler dump.

Now we know that main is at 0x0000000000400524,0x0000000000400539. If we use the same offset to look at the striped binary we get the same results:

(gdb) disas 0x0000000000400524,0x0000000000400539
Dump of assembler code from 0x400524 to 0x400539:
   0x0000000000400524:  push   %rbp
   0x0000000000400525:  mov    %rsp,%rbp
   0x0000000000400528:  mov    $0x40062c,%edi
   0x000000000040052d:  callq  0x400418 <puts@plt>
   0x0000000000400532:  mov    $0x0,%eax
   0x0000000000400537:  leaveq 
   0x0000000000400538:  retq   
End of assembler dump.

So, unless you can get some tip where the main starts (like using another code with symbols), another way is if you can have some info about the firsts assembly instructions, so you can disassembly at specifics places and look if it matches. If you have no access at all to the code, you still can read the ELF definition to understand how many sections should appear in the code and try a calculated address. Still, you need info about sections in the code!

That is hard work, my friend! Good luck!

Beco