Can anybody give pointers how I can implement lzw compression/decompression in low memory conditions (< 2k). is that possible?
The zlib library that everyone uses is bloated among other problems (for embedded). I am pretty sure it wont work for your case. I had a little more memory maybe 16K and couldnt get it to fit. It allocates and zeros large chunks of memory and keeps copies of stuff, etc. The algorithm can maybe do it but finding existing code is the challenge.
I went with http://lzfx.googlecode.com The decompression loop is tiny, it is the older lz type compression that relies on the prior results so you need to have access to the uncompressed results...The next byte is a 0x5, the next byte is a 0x23, the next 15 bytes are a copy of the 15 200 bytes ago, the next 6 bytes are a copy of 127 ago...the newer lz algorithm is variable width table based that can be big or grow depending on how implemented.
I was dealing with repetitive data and trying to squeeze a few K down into a few hundred, I think the compression was about 50%, not great but did the job and the decompression routine was tiny. The lzfx package above is small, not like zlib, like two main functions that have the code right there, not dozens of files. You could likely change the depth of the buffer, perhaps improve the compression algorithm if you so desire. I did have to modify the decompression code (like 20 or 30 lines of code perhaps) it was pointer heavy and I switched it to arrays because in my embedded environment the pointers were in the wrong place. Burns maybe an extra register or not depending on how you implement it and your compiler. I also did that so I could abstract the fetches and the stores of the bytes as I had them packed into memory that wasnt byte addressable.
If you find something better please post it here or ping me through stackoverflow, I am also very interested in other embedded solutions. I searched quite a bit and the above was the only useful one I found and I was lucky that my data was such that it compressed well enough using that algorithm...for now.