I have this C struct: (representing an IP datagram)
struct ip_dgram
{
unsigned int ver : 4;
unsigned int hlen : 4;
unsigned int stype : 8;
unsigned int tlen : 16;
unsigned int fid : 16;
unsigned int flags : 3;
unsigned int foff : 13;
unsigned int ttl : 8;
unsigned int pcol : 8;
unsigned int chksm : 16;
unsigned int src : 32;
unsigned int des : 32;
unsigned char opt[40];
};
I'm assigning values to it, and then printing its memory layout in 16-bit words like this:
//prints 16 bits at a time
void print_dgram(struct ip_dgram dgram)
{
unsigned short int* ptr = (unsigned short int*)&dgram;
int i,j;
//print only 10 words
for(i=0 ; i<10 ; i++)
{
for(j=15 ; j>=0 ; j--)
{
if( (*ptr) & (1<<j) ) printf("1");
else printf("0");
if(j%8==0)printf(" ");
}
ptr++;
printf("\n");
}
}
int main()
{
struct ip_dgram dgram;
dgram.ver = 4;
dgram.hlen = 5;
dgram.stype = 0;
dgram.tlen = 28;
dgram.fid = 1;
dgram.flags = 0;
dgram.foff = 0;
dgram.ttl = 4;
dgram.pcol = 17;
dgram.chksm = 0;
dgram.src = (unsigned int)htonl(inet_addr("10.12.14.5"));
dgram.des = (unsigned int)htonl(inet_addr("12.6.7.9"));
print_dgram(dgram);
return 0;
}
I get this output:
00000000 01010100
00000000 00011100
00000000 00000001
00000000 00000000
00010001 00000100
00000000 00000000
00001110 00000101
00001010 00001100
00000111 00001001
00001100 00000110
But I expect this:
The output is partially correct; somewhere, the bytes and nibbles seem to be interchanged. Is there some endianness issue here? Are bit-fields not good for this purpose? I really don't know. Any help? Thanks in advance!
No, bitfields are not good for this purpose. The layout is compiler-dependant.
It's generally not a good idea to use bitfields for data where you want to control the resulting layout, unless you have (compiler-specific) means, such as #pragma
s, to do so.
The best way is probably to implement this without bitfields, i.e. by doing the needed bitwise operations yourself. This is annoying, but way easier than somehow digging up a way to fix this. Also, it's platform-independent.
Define the header as just an array of 16-bit words, and then you can compute the checksum easily enough.