Async future with a callback. C++11

user565447 picture user565447 · Feb 22, 2017 · Viewed 8.1k times · Source

I have a list of futures. The problem is that I have a lot of files and I need to make some long operation after every file will be created. That's why I want to make a callback after each "file save".

E.g.,

  (new thread; saveFile 1.txt -> new thread; do a long operation after the file has been created)
  (new thread; saveFile 2.pdf -> new thread; do a long operation after the file has been created).

I need to do everything in a separate thread. The saving of the file is critical, the second task can't be run before the file will have been created. How can I do it? I have the following code:

 void save_file() {
     // preparing data...
     saving a file
   } 

   std::vector<std::future<void>> saveFileTasks;
   for (int n = 0; n < p.size(); ++n)
   {
      saveFileTasks.push_back(std::async(std::bind(&saveFile, filename)));
   }

   for (auto &e : saveFileTasks) {
      e.get();
   }

How can I make a callback in C++11 with future/promise? I am not allowed to use boost in my project.

I'm really confused, there are so much complicated examples for a very simple task. A lot of examples can't be compilable, e.g., promise.set_wait_callback doesn't exist in C++11 but many functions have been migrated to C++11. I can do it really easy if I use Python or Clojure. How can I do it with C++?

Answer

Yakk - Adam Nevraumont picture Yakk - Adam Nevraumont · Feb 22, 2017

In the future, future will have a .then operator that lets you chain tasks.

Lacking it we can write it.

// complete named operator library in about a dozen lines of code:
namespace named_operator {
  template<class D>struct make_operator{ constexpr make_operator() {}; };

  template<class T, class O> struct half_apply { T&& lhs; };

  template<class Lhs, class Op>
  half_apply<Lhs, Op> operator*( Lhs&& lhs, make_operator<Op> ) {
    return {std::forward<Lhs>(lhs)};
  }
  template<class Lhs, class Op, class Rhs>
  decltype(auto) operator*( half_apply<Lhs, Op>&& lhs, Rhs&& rhs )
  {
    return named_invoke( std::forward<Lhs>(lhs.lhs), Op{}, std::forward<Rhs>(rhs) );
  }
}

// create a named operator then:
namespace then_ns {
  static const struct then_t:named_operator::make_operator<then_t> {} then{};

  namespace details {
    template<size_t...Is, class Tup, class F>
    auto invoke_helper( std::index_sequence<Is...>, Tup&& tup, F&& f )
    ->decltype(std::forward<F>(f)( std::get<Is>(std::forward<Tup>(tup))... ))
    {
      return std::forward<F>(f)( std::get<Is>(std::forward<Tup>(tup))... );
    }
  }

  // first overload of A *then* B handles tuple and tuple-like return values:
  template<class Tup, class F>
  auto named_invoke( Tup&& tup, then_t, F&& f )
  -> decltype( details::invoke_helper( std::make_index_sequence< std::tuple_size<std::decay_t<Tup>>{} >{}, std::forward<Tup>(tup), std::forward<F>(f) ) )
  {
    return details::invoke_helper( std::make_index_sequence< std::tuple_size<std::decay_t<Tup>>{} >{}, std::forward<Tup>(tup), std::forward<F>(f) );
  }

  // second overload of A *then* B
  // only applies if above does not:
  template<class T, class F>
  auto named_invoke( T&& t, then_t, F&& f, ... )
  -> std::result_of_t< F(T) >
  {
    return std::forward<F>(f)(std::forward<T>(t));
  }
  // *then* with a future; unpack the future
  // into a call to f within an async:
  template<class X, class F>
  auto named_invoke( std::future<X> x, then_t, F&& f )
  -> std::future< std::decay_t<decltype( std::move(x).get() *then* std::declval<F>() )> >
  {
    return std::async( std::launch::async,
      [x = std::move(x), f = std::forward<F>(f)]() mutable {
        return std::move(x).get() *then* std::move(f);
      }
    );
  }
  // void future, don't try to pass void to f:
  template<class F>
  auto named_invoke( std::future<void> x, then_t, F&& f )
  -> std::future< std::decay_t<decltype( std::declval<F>()() )> >
  {
    return std::async( std::launch::async,
      [x = std::move(x), f = std::forward<F>(f)]() mutable {
        std::move(x).get();
        return std::move(f)();
      }
    );
  }
}
using then_ns::then;

see, that wasn't that hard.

a *then* f, if a is a tuple (or pair or array), will invoke f with the contents of a.

If a isn't tuple-like, or f doesn't accept the contents of a that way, it invokes f with a.

If a is a future, it instead creates a new async future that consumes a.get() using *then*.

Live example.

Suppose you want to increase an atomic int when the file is saved:

std::vector<std::future<void>> saveFileTasks;
for (int n = 0; n < p.size(); ++n)
{
  saveFileTasks.push_back(
    std::async(std::launch::async, [filename]{
      saveFile(filename);
    })
  );
}
std::atomic<int> count;
for (auto &e : saveFileTasks) {
  e = std::move(e) *then* [&count]{
    ++count;
  });
}

Naturally this can all be done without the named operator *then* style syntax, but what is the fun of that?

If the first async returns a tuple, the second one can either take it as a tuple or as unpacked "flat" arguments.