I was searching Google for a page offering some simple OpenMp algorithms. Probably there is an example to calculate min, max, median, average from a huge data array but I am not capable to find it.
At least I would normally try to divide the array into one chunk for each core and do some boundary calculation afterwards to get the result for the complete array.
I just didn't want to reinvent the wheel.
Additional Remark: I know that there are thousands of examples that work with simple reduction. e.g. Calculating PI.
const int num_steps = 100000;
double x, sum = 0.0;
const double step = 1.0/double(num_steps);
#pragma omp parallel for reduction(+:sum) private(x)
for (int i=1;i<= num_steps; i++){
x = double(i-0.5)*step;
sum += 4.0/(1.0+x*x);
}
const double pi = step * sum;
but when these kind of algorithms aren't usable there are almost no examples left for reducing algorithms.
OpenMP (at least 2.0) supports reduction for some simple operations, but not for max and min.
In the following example the reduction
clause is used to make a sum and a critical
section is used to update a shared variable using a thread-local one without conflicts.
#include <iostream>
#include <cmath>
int main()
{
double sum = 0;
uint64_t ii;
uint64_t maxii = 0;
uint64_t maxii_shared = 0;
#pragma omp parallel shared(maxii_shared) private(ii) firstprivate(maxii)
{
#pragma omp for reduction(+:sum) nowait
for(ii=0; ii<10000000000; ++ii)
{
sum += std::pow((double)ii, 2.0);
if(ii > maxii) maxii = ii;
}
#pragma omp critical
{
if(maxii > maxii_shared) maxii_shared = maxii;
}
}
std::cerr << "Sum: " << sum << " (" << maxii_shared << ")" << std::endl;
}
EDIT: a cleaner implementation:
#include <cmath>
#include <limits>
#include <vector>
#include <iostream>
#include <algorithm>
#include <tr1/random>
// sum the elements of v
double sum(const std::vector<double>& v)
{
double sum = 0.0;
#pragma omp parallel for reduction(+:sum)
for(size_t ii=0; ii< v.size(); ++ii)
{
sum += v[ii];
}
return sum;
}
// extract the minimum of v
double min(const std::vector<double>& v)
{
double shared_min;
#pragma omp parallel
{
double min = std::numeric_limits<double>::max();
#pragma omp for nowait
for(size_t ii=0; ii<v.size(); ++ii)
{
min = std::min(v[ii], min);
}
#pragma omp critical
{
shared_min = std::min(shared_min, min);
}
}
return shared_min;
}
// generate a random vector and use sum and min functions.
int main()
{
using namespace std;
using namespace std::tr1;
std::tr1::mt19937 engine(time(0));
std::tr1::uniform_real<> unigen(-1000.0,1000.0);
std::tr1::variate_generator<std::tr1::mt19937,
std::tr1::uniform_real<> >gen(engine, unigen);
std::vector<double> random(1000000);
std::generate(random.begin(), random.end(), gen);
cout << "Sum: " << sum(random) << " Mean:" << sum(random)/random.size()
<< " Min:" << min(random) << endl;
}