I have tried the following:
std::function<void ()> getAction(std::unique_ptr<MyClass> &&psomething){
//The caller given ownership of psomething
return [psomething](){
psomething->do_some_thing();
//psomething is expected to be released after this point
};
}
But it does not compile. Any ideas?
UPDATE:
AS suggested, some new syntax is required to explicitly specify we need to transfer the ownership to the lambda, I am now thinking about the following syntax:
std::function<void ()> getAction(std::unique_ptr<MyClass> psomething){
//The caller given ownership of psomething
return [auto psomething=move(psomething)](){
psomething->do_some_thing();
//psomething is expected to be released after this point
};
}
Would it be a good candidate?
UPDATE 1:
I will show my implementation of move
and copy
as following:
template<typename T>
T copy(const T &t) {
return t;
}
//process lvalue references
template<typename T>
T move(T &t) {
return std::move(t);
}
class A{/*...*/};
void test(A &&a);
int main(int, char **){
A a;
test(copy(a)); //OK, copied
test(move(a)); //OK, moved
test(A()); //OK, temporary object
test(copy(A())); //OK, copying temporary object
//You can disable this behavior by letting copy accepts T &
//test(move(A())); You should never move a temporary object
//It is not good to have a rvalue version of move.
//test(a); forbidden, you have to say weather you want to copy or move
//from a lvalue reference.
}
This issue is addressed by lambda generalized capture in C++14:
// a unique_ptr is move-only
auto u = make_unique<some_type>(some, parameters);
// move the unique_ptr into the lambda
go.run([u = move(u)]{do_something_with(u);});