I need to detect the Sun from the space sky.
These are examples of the input images:
I've got such results after Morphologic filtering ( open
operation for twice )
Here's the algorithm code of this processing:
// Color to Gray
cvCvtColor(image, gray, CV_RGB2GRAY);
// color threshold
cvThreshold(gray,gray,150,255,CV_THRESH_BINARY);
// Morphologic open for 2 times
cvMorphologyEx( gray, dst, NULL, CV_SHAPE_RECT, CV_MOP_OPEN, 2);
Isn't it too heavy processing for such a simple task? And how to find the center of the Sun? If I find white points, than I'll find white points of big Earth ( left top corner on first example image )
Please advise me please my further action to detect the Sun.
UPDATE 1:
Trying algorithm of getting centroid
by formula : {x,y} = {M10/M00, M01/M00}
CvMoments moments;
cvMoments(dst, &moments, 1);
double m00, m10, m01;
m00 = cvGetSpatialMoment(&moments, 0,0);
m10 = cvGetSpatialMoment(&moments, 1,0);
m01 = cvGetSpatialMoment(&moments, 0,1);
// calculating centroid
float centroid_x = m10/m00;
float centroid_y = m01/m00;
cvCircle( image,
cvPoint(cvRound(centroid_x), cvRound(centroid_y)),
50, CV_RGB(125,125,0), 4, 8,0);
And where Earth is in the photo, I got such a result:
So, centroid is on the Earth. :(
UPDATE 2:
Trying cvHoughCircles
:
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* circles = cvHoughCircles(dst, storage, CV_HOUGH_GRADIENT, 12,
dst->width/2, 255, 100, 0, 35);
if ( circles->total > 0 ) {
// getting first found circle
float* circle = (float*)cvGetSeqElem( circles, 0 );
// Drawing:
// green center dot
cvCircle( image, cvPoint(cvRound(circle[0]),cvRound(circle[1])),
3, CV_RGB(0,255,0), -1, 8, 0 );
// wrapping red circle
cvCircle( image, cvPoint(cvRound(circle[0]),cvRound(circle[1])),
cvRound(circle[2]), CV_RGB(255,0,0), 3, 8, 0 );
}
First example: bingo, but the second - no ;(
I've tried different configuration of cvHoughCircles()
- couldn't find configuration to fit every my example photo.
UPDATE3:
matchTemplate
approach worked for me ( response of mevatron
). It worked with big number of tests.
How about trying a simple matchTemplate
approach. I used this template image:
And, it detected the 3 out of 3 of the sun images I tried:
This should work due to the fact that circles (in your case the sun) are rotationally invariant, and since you are so far away from the sun it should be roughly scale invariant as well. So, template matching will work quite nicely here.
Finally, here is the code that I used to do this:
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main(int argc, char* argv[])
{
/// Load image and template
string inputName = "sun2.png";
string outputName = "sun2_detect.png";
Mat img = imread( inputName, 1 );
Mat templ = imread( "sun_templ.png", 1 );
/// Create the result matrix
int result_cols = img.cols - templ.cols + 1;
int result_rows = img.rows - templ.rows + 1;
Mat result( result_cols, result_rows, CV_32FC1 );
/// Do the Matching and Normalize
matchTemplate(img, templ, result, CV_TM_CCOEFF);
normalize(result, result, 0, 1, NORM_MINMAX, -1, Mat());
Point maxLoc;
minMaxLoc(result, NULL, NULL, NULL, &maxLoc);
rectangle(img, maxLoc, Point( maxLoc.x + templ.cols , maxLoc.y + templ.rows ), Scalar(0, 255, 0), 2);
rectangle(result, maxLoc, Point( maxLoc.x + templ.cols , maxLoc.y + templ.rows ), Scalar(0, 255, 0), 2);
imshow("img", img);
imshow("result", result);
imwrite(outputName, img);
waitKey(0);
return 0;
}
Hope you find that helpful!