(Note: This question is about not having to specify the number of elements and still allow nested types to be directly initialized.)
This question discusses the uses left for a C array like int arr[20];
. On his answer, @James Kanze shows one of the last strongholds of C arrays, it's unique initialization characteristics:
int arr[] = { 1, 3, 3, 7, 0, 4, 2, 0, 3, 1, 4, 1, 5, 9 };
We don't have to specify the number of elements, hooray! Now iterate over it with the C++11 functions std::begin
and std::end
from <iterator>
(or your own variants) and you never need to even think of its size.
Now, are there any (possibly TMP) ways to achieve the same with std::array
? Use of macros allowed to make it look nicer. :)
??? std_array = { "here", "be", "elements" };
Edit: Intermediate version, compiled from various answers, looks like this:
#include <array>
#include <utility>
template<class T, class... Tail, class Elem = typename std::decay<T>::type>
std::array<Elem,1+sizeof...(Tail)> make_array(T&& head, Tail&&... values)
{
return { std::forward<T>(head), std::forward<Tail>(values)... };
}
// in code
auto std_array = make_array(1,2,3,4,5);
And employs all kind of cool C++11 stuff:
sizeof...
std::array
, of courseauto
)And an example can be found here.
However, as @Johannes points out in the comment on @Xaade's answer, you can't initialize nested types with such a function. Example:
struct A{ int a; int b; };
// C syntax
A arr[] = { {1,2}, {3,4} };
// using std::array
??? std_array = { {1,2}, {3,4} };
Also, the number of initializers is limited to the number of function and template arguments supported by the implementation.
Best I can think of is:
template<class T, class... Tail>
auto make_array(T head, Tail... tail) -> std::array<T, 1 + sizeof...(Tail)>
{
std::array<T, 1 + sizeof...(Tail)> a = { head, tail ... };
return a;
}
auto a = make_array(1, 2, 3);
However, this requires the compiler to do NRVO, and then also skip the copy of returned value (which is also legal but not required). In practice, I would expect any C++ compiler to be able to optimize that such that it's as fast as direct initialization.