Computing FFT and IFFT with FFTW library C++

DogDog picture DogDog · Apr 16, 2011 · Viewed 22.3k times · Source

I am trying to compute the FFT and then the IFFT just to try out if I can get the same signal back but I am not really sure how to accomplish it. This is how I do the FFT:

    plan = fftw_plan_r2r_1d(blockSize, datas, out, FFTW_R2HC, FFTW_ESTIMATE);
    fftw_execute(plan);

Answer

hbp picture hbp · Feb 27, 2014

Here is an example. It does two things. First, it prepares an input array in[N] as a cosine wave, whose frequency is 3 and magnitude is 1.0, and Fourier transforms it. So, in the output, you should see a peak at out[3] and and another at out[N-3]. Since the magnitude of the cosine wave is 1.0, you get N/2 at out[3] and out[N-3].

Second, it inverse Fourier transforms the array out[N] back to in2[N]. And after a proper normalization, you can see that in2[N] is identical to in[N].

#include <stdlib.h>
#include <math.h>
#include <fftw3.h>
#define N 16
int main(void) {
  fftw_complex in[N], out[N], in2[N]; /* double [2] */
  fftw_plan p, q;
  int i;

  /* prepare a cosine wave */
  for (i = 0; i < N; i++) {
    in[i][0] = cos(3 * 2*M_PI*i/N);
    in[i][1] = 0;
  }

  /* forward Fourier transform, save the result in 'out' */
  p = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
  fftw_execute(p);
  for (i = 0; i < N; i++)
    printf("freq: %3d %+9.5f %+9.5f I\n", i, out[i][0], out[i][1]);
  fftw_destroy_plan(p);

  /* backward Fourier transform, save the result in 'in2' */
  printf("\nInverse transform:\n");
  q = fftw_plan_dft_1d(N, out, in2, FFTW_BACKWARD, FFTW_ESTIMATE);
  fftw_execute(q);
  /* normalize */
  for (i = 0; i < N; i++) {
    in2[i][0] *= 1./N;
    in2[i][1] *= 1./N;
  }
  for (i = 0; i < N; i++)
    printf("recover: %3d %+9.5f %+9.5f I vs. %+9.5f %+9.5f I\n",
        i, in[i][0], in[i][1], in2[i][0], in2[i][1]);
  fftw_destroy_plan(q);

  fftw_cleanup();
  return 0;
}

This is the output:

freq:   0  -0.00000  +0.00000 I
freq:   1  +0.00000  +0.00000 I
freq:   2  -0.00000  +0.00000 I
freq:   3  +8.00000  -0.00000 I
freq:   4  +0.00000  +0.00000 I
freq:   5  -0.00000  +0.00000 I
freq:   6  +0.00000  -0.00000 I
freq:   7  -0.00000  +0.00000 I
freq:   8  +0.00000  +0.00000 I
freq:   9  -0.00000  -0.00000 I
freq:  10  +0.00000  +0.00000 I
freq:  11  -0.00000  -0.00000 I
freq:  12  +0.00000  -0.00000 I
freq:  13  +8.00000  +0.00000 I
freq:  14  -0.00000  -0.00000 I
freq:  15  +0.00000  -0.00000 I

Inverse transform:
recover:   0  +1.00000  +0.00000 I vs.  +1.00000  +0.00000 I
recover:   1  +0.38268  +0.00000 I vs.  +0.38268  +0.00000 I
recover:   2  -0.70711  +0.00000 I vs.  -0.70711  +0.00000 I
recover:   3  -0.92388  +0.00000 I vs.  -0.92388  +0.00000 I
recover:   4  -0.00000  +0.00000 I vs.  -0.00000  +0.00000 I
recover:   5  +0.92388  +0.00000 I vs.  +0.92388  +0.00000 I
recover:   6  +0.70711  +0.00000 I vs.  +0.70711  +0.00000 I
recover:   7  -0.38268  +0.00000 I vs.  -0.38268  +0.00000 I
recover:   8  -1.00000  +0.00000 I vs.  -1.00000  +0.00000 I
recover:   9  -0.38268  +0.00000 I vs.  -0.38268  +0.00000 I
recover:  10  +0.70711  +0.00000 I vs.  +0.70711  +0.00000 I
recover:  11  +0.92388  +0.00000 I vs.  +0.92388  +0.00000 I
recover:  12  +0.00000  +0.00000 I vs.  +0.00000  +0.00000 I
recover:  13  -0.92388  +0.00000 I vs.  -0.92388  +0.00000 I
recover:  14  -0.70711  +0.00000 I vs.  -0.70711  +0.00000 I
recover:  15  +0.38268  +0.00000 I vs.  +0.38268  +0.00000 I