When exactly does the compiler create a virtual function table?
1) when the class contains at least one virtual function.
OR
2) when the immediate base class contains at least one virtual function.
OR
3) when any parent class at any level of the hierarchy contains at least one virtual function.
A related question to this: Is it possible to give up dynamic dispatch in a C++ hierarchy?
e.g. consider the following example.
#include <iostream>
using namespace std;
class A {
public:
virtual void f();
};
class B: public A {
public:
void f();
};
class C: public B {
public:
void f();
};
Which classes will contain a V-Table?
Since B does not declare f() as virtual, does class C get dynamic polymorphism?
Beyond "vtables are implementation-specific" (which they are), if a vtable is used: there will be unique vtables for each of your classes. Even though B::f and C::f are not declared virtual, because there is a matching signature on a virtual method from a base class (A in your code), B::f and C::f are both implicitly virtual. Because each class has at least one unique virtual method (B::f overrides A::f for B instances and C::f similarly for C instances), you need three vtables.
You generally shouldn't worry about such details. What matters is whether you have virtual dispatch or not. You don't have to use virtual dispatch, by explicitly specifying which function to call, but this is generally only useful when implementing a virtual method (such as to call the base's method). Example:
struct B {
virtual void f() {}
virtual void g() {}
};
struct D : B {
virtual void f() { // would be implicitly virtual even if not declared virtual
B::f();
// do D-specific stuff
}
virtual void g() {}
};
int main() {
{
B b; b.g(); b.B::g(); // both call B::g
}
{
D d;
B& b = d;
b.g(); // calls D::g
b.B::g(); // calls B::g
b.D::g(); // not allowed
d.D::g(); // calls D::g
void (B::*p)() = &B::g;
(b.*p)(); // calls D::g
// calls through a function pointer always use virtual dispatch
// (if the pointed-to function is virtual)
}
return 0;
}
Some concrete rules that may help; but don't quote me on these, I've likely missed some edge cases:
Remember that a vtable is similar to a static data member of a class, and instances have only pointers to these.
Also see the comprehensive article C++: Under the Hood (March 1994) by Jan Gray. (Try Google if that link dies.)
Example of reusing a vtable:
struct B {
virtual void f();
};
struct D : B {
// does not override B::f
// does not have other virtuals of its own
void g(); // still might have its own non-virtuals
int n; // and data members
};
In particular, notice B's dtor isn't virtual (and this is likely a mistake in real code), but in this example, D instances will point to the same vtable as B instances.