The thing is I am unable to implement the center of mass with the existing code, which image object to use etc after the detected object is bounded by the rectangle so that I may get the trajectory of the path.
I am using Opencv2.3
.I found out there are 2 methods - Link1 and Link2 talk about the usage of moments. And the other method is to use the information of the bounding box Link3. The method of moments requires image thresholding. However, when using SURF the image is in gray scale. So, on passing a gray image for thresholding displays a white image! Now, I am having a tough time in understanding how I should calculate the centroid using the code below (esp what should I use instead of points[i].x
since I am using
obj.push_back( kp_object[ good_matches[i].queryIdx ].pt );
scene.push_back( kp_image[ good_matches[i].trainIdx ].pt )
where in my case numPoints=good_matches.size()
, denoting the number of feature points) as mentioned in the documentation. If anyone can put up an implementation of how to use SURF with centroid then it will be helpful.
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/calib3d/calib3d.hpp"
using namespace cv;
int main()
{
Mat object = imread( "object.png", CV_LOAD_IMAGE_GRAYSCALE );
if( !object.data )
{
std::cout<< "Error reading object " << std::endl;
return -1;
}
//Detect the keypoints using SURF Detector
int minHessian = 500;
SurfFeatureDetector detector( minHessian );
std::vector<KeyPoint> kp_object;
detector.detect( object, kp_object );
//Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat des_object;
extractor.compute( object, kp_object, des_object );
FlannBasedMatcher matcher;
VideoCapture cap(0);
namedWindow("Good Matches");
std::vector<Point2f> obj_corners(4);
//Get the corners from the object
obj_corners[0] = cvPoint(0,0);
obj_corners[1] = cvPoint( object.cols, 0 );
obj_corners[2] = cvPoint( object.cols, object.rows );
obj_corners[3] = cvPoint( 0, object.rows );
char key = 'a';
int framecount = 0;
while (key != 27)
{
Mat frame;
cap >> frame;
if (framecount < 5)
{
framecount++;
continue;
}
Mat des_image, img_matches;
std::vector<KeyPoint> kp_image;
std::vector<vector<DMatch > > matches;
std::vector<DMatch > good_matches;
std::vector<Point2f> obj;
std::vector<Point2f> scene;
std::vector<Point2f> scene_corners(4);
Mat H;
Mat image;
cvtColor(frame, image, CV_RGB2GRAY);
detector.detect( image, kp_image );
extractor.compute( image, kp_image, des_image );
matcher.knnMatch(des_object, des_image, matches, 2);
for(int i = 0; i < min(des_image.rows-1,(int) matches.size()); i++) //THIS LOOP IS SENSITIVE TO SEGFAULTS
{
if((matches[i][0].distance < 0.6*(matches[i][4].distance)) && ((int) matches[i].size()<=2 && (int) matches[i].size()>0))
{
good_matches.push_back(matches[i][0]);
}
}
//Draw only "good" matches
drawMatches( object, kp_object, image, kp_image, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
if (good_matches.size() >= 4)
{
for( int i = 0; i < good_matches.size(); i++ )
{
//Get the keypoints from the good matches
obj.push_back( kp_object[ good_matches[i].queryIdx ].pt );
scene.push_back( kp_image[ good_matches[i].trainIdx ].pt );
}
H = findHomography( obj, scene, CV_RANSAC );
perspectiveTransform( obj_corners, scene_corners, H);
//Draw lines between the corners (the mapped object in the scene image )
line( img_matches, scene_corners[0] + Point2f( object.cols, 0), scene_corners[1] + Point2f( object.cols, 0), Scalar(0, 255, 0), 4 );
line( img_matches, scene_corners[1] + Point2f( object.cols, 0), scene_corners[2] + Point2f( object.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[2] + Point2f( object.cols, 0), scene_corners[3] + Point2f( object.cols, 0), Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[3] + Point2f( object.cols, 0), scene_corners[0] + Point2f( object.cols, 0), Scalar( 0, 255, 0), 4 );
}
//Show detected matches
imshow( "Good Matches", img_matches );
key = waitKey(1);
}
return 0;
}
so, you already got your pointlists,
obj.push_back( kp_object[ good_matches[i].queryIdx ].pt );
scene.push_back( kp_image[ good_matches[i].trainIdx ].pt );
i think, it's perfectly valid, to calc the centroid based on that, no further image processing nessecary.
there's 2 methods, the 'center of mass' way, that's just the mean position of all points, like this:
Point2f cen(0,0);
for ( size_t i=0; i<scene.size(); i++ )
{
cen.x += scene[i].x;
cen.y += scene[i].y;
}
cen.x /= scene.size();
cen.y /= scene.size();
and the 'center of bbox' way
Point2f pmin(1000000,1000000);
Point2f pmax(0,0);
for ( size_t i=0; i<scene.size(); i++ )
{
if ( scene[i].x < pmin.x ) pmin.x = scene[i].x;
if ( scene[i].y < pmin.y ) pmin.y = scene[i].y;
if ( scene[i].x > pmax.x ) pmax.x = scene[i].x;
if ( scene[i].y > pmax.y ) pmax.y = scene[i].y;
}
Point2f cen( (pmax.x-pmin.x)/2, (pmax.y-pmin.y)/2);
note, that the results will be different ! they're only the same for circles & squares, point symmetric objects
// now draw a circle around the centroid:
cv::circle( img, cen, 10, Scalar(0,0,255), 2 );
// and a line connecting the query and train points:
cv::line( img, scene[i], obj[i], Scalar(255,0,0), 2 );