#include <iostream>
#include <string>
using namespace std;
int get_bin_representation(char x){
if(x == '1'){
return 1;
}
else if(x == '0'){
return 0;
}
}
int gen_hamming_code(string token){
int bits[4];
int temp(0);
for(int k=0; k<4; k++){
bits[k] = get_bin_representation(token.at(k));
}
int ham_code[7];
ham_code[0] = bits[0] + bits[1] + bits[3];
ham_code[1] = bits[0] + bits[2] + bits[3];
ham_code[2] = bits[0];
ham_code[3] = bits[1] + bits[2] + bits[3];
ham_code[4] = bits[1];
ham_code[5] = bits[2];
ham_code[6] = bits[3];
for(int h=0; h<7; h++){
temp = ham_code[h];
ham_code[h] = temp%2;
temp = 0;
}
for(int e=0; e<7; e++){
cout << ham_code[e];
}
cout << endl;
return 0;
}
int main(){
string usr_input;
string msg;
int index(0);
cout << "Hamming Code Program" << endl;
while(true){
cout << endl << ": ";
getline(cin, usr_input);
if(usr_input.find("gen") != std::string::npos){
for(int i=0; i<usr_input.length(); i++){
if(usr_input.at(i) == ' '){
index = i;
}
}
for(int j=index; j<usr_input.length(); j++){
msg+=usr_input.at(j);
}
cout << "Hamming code (7,4): ";
gen_hamming_code(msg);
}
}
}
I used the linear algebra definition supplied by Wikipedia ('Hamming Code (7,4)'). At several points in the program, I printed the variable contents, but fixing one problem lead to another. To verify if the output was correct, I compared it to the example available on Wikipedia, and the result produced by an online calculator.
UPDATED: Question resolved. I used an adaptation of the algorithm provided here (without AMP).
Well, this is wrong:
ham_code[0] = bits[0] + bits[1] + bits[3];
Hamming codes are defined using GF(2) arithmetic. Addition in GF(2) is the C++ xor operator (^
). Use the right operator, and you can do away with the later %2
loop.
You've also intermingled the parity bits with the plaintext, which is something never done when I learned about it. As well, the online simulator is using the simple order (plaintext, parity) without interleaving.