I'm working on a statistical application containing approximately 10 - 30 million floating point values in an array.
Several methods performing different, but independent, calculations on the array in nested loops, for example:
Dictionary<float, int> noOfNumbers = new Dictionary<float, int>();
for (float x = 0f; x < 100f; x += 0.0001f) {
int noOfOccurrences = 0;
foreach (float y in largeFloatingPointArray) {
if (x == y) {
noOfOccurrences++;
}
}
noOfNumbers.Add(x, noOfOccurrences);
}
The current application is written in C#, runs on an Intel CPU and needs several hours to complete. I have no knowledge of GPU programming concepts and APIs, so my questions are:
Any help would be highly appreciated.
UPDATE GPU Version
__global__ void hash (float *largeFloatingPointArray,int largeFloatingPointArraySize, int *dictionary, int size, int num_blocks)
{
int x = (threadIdx.x + blockIdx.x * blockDim.x); // Each thread of each block will
float y; // compute one (or more) floats
int noOfOccurrences = 0;
int a;
while( x < size ) // While there is work to do each thread will:
{
dictionary[x] = 0; // Initialize the position in each it will work
noOfOccurrences = 0;
for(int j = 0 ;j < largeFloatingPointArraySize; j ++) // Search for floats
{ // that are equal
// to it assign float
y = largeFloatingPointArray[j]; // Take a candidate from the floats array
y *= 10000; // e.g if y = 0.0001f;
a = y + 0.5; // a = 1 + 0.5 = 1;
if (a == x) noOfOccurrences++;
}
dictionary[x] += noOfOccurrences; // Update in the dictionary
// the number of times that the float appears
x += blockDim.x * gridDim.x; // Update the position here the thread will work
}
}
This one I just tested for smaller inputs, because I am testing in my laptop. Nevertheless, it is working, but more tests are needed.
UPDATE Sequential Version
I just did this naive version that executes your algorithm for an array with 30,000,000 element in less than 20 seconds (including the time taken by function that generates the data).
This naive version first sorts your array of floats. Afterward, will go through the sorted array and check the number of times a given value
appears in the array and then puts this value in a dictionary along with the number of times it has appeared.
You can use sorted
map, instead of the unordered_map
that I used.
Heres the code:
#include <stdio.h>
#include <stdlib.h>
#include "cuda.h"
#include <algorithm>
#include <string>
#include <iostream>
#include <tr1/unordered_map>
typedef std::tr1::unordered_map<float, int> Mymap;
void generator(float *data, long int size)
{
float LO = 0.0;
float HI = 100.0;
for(long int i = 0; i < size; i++)
data[i] = LO + (float)rand()/((float)RAND_MAX/(HI-LO));
}
void print_array(float *data, long int size)
{
for(long int i = 2; i < size; i++)
printf("%f\n",data[i]);
}
std::tr1::unordered_map<float, int> fill_dict(float *data, int size)
{
float previous = data[0];
int count = 1;
std::tr1::unordered_map<float, int> dict;
for(long int i = 1; i < size; i++)
{
if(previous == data[i])
count++;
else
{
dict.insert(Mymap::value_type(previous,count));
previous = data[i];
count = 1;
}
}
dict.insert(Mymap::value_type(previous,count)); // add the last member
return dict;
}
void printMAP(std::tr1::unordered_map<float, int> dict)
{
for(std::tr1::unordered_map<float, int>::iterator i = dict.begin(); i != dict.end(); i++)
{
std::cout << "key(string): " << i->first << ", value(int): " << i->second << std::endl;
}
}
int main(int argc, char** argv)
{
int size = 1000000;
if(argc > 1) size = atoi(argv[1]);
printf("Size = %d",size);
float data[size];
using namespace __gnu_cxx;
std::tr1::unordered_map<float, int> dict;
generator(data,size);
sort(data, data + size);
dict = fill_dict(data,size);
return 0;
}
If you have the library thrust installed in you machine your should use this:
#include <thrust/sort.h>
thrust::sort(data, data + size);
instead of this
sort(data, data + size);
For sure it will be faster.
Original Post
I'm working on a statistical application which has a large array containing 10 - 30 millions of floating point values.
Is it possible (and does it make sense) to utilize a GPU to speed up such calculations?
Yes, it is. A month ago, I ran an entirely Molecular Dynamic simulation on a GPU. One of the kernels, which calculated the force between pairs of particles, received as parameter 6
array each one with 500,000
doubles, for a total of 3
Millions doubles (22 MB)
.
So if you are planning to put 30
Million floating points, which is about 114 MB
of global Memory, it will not be a problem.
In your case, can the number of calculations be an issue? Based on my experience with the Molecular Dynamic (MD), I would say no. The sequential MD version takes about 25
hours to complete while the GPU version took 45
Minutes. You said your application took a couple hours, also based in your code example it looks softer than the MD.
Here's the force calculation example:
__global__ void add(double *fx, double *fy, double *fz,
double *x, double *y, double *z,...){
int pos = (threadIdx.x + blockIdx.x * blockDim.x);
...
while(pos < particles)
{
for (i = 0; i < particles; i++)
{
if(//inside of the same radius)
{
// calculate force
}
}
pos += blockDim.x * gridDim.x;
}
}
A simple example of a code in CUDA could be the sum of two 2D arrays:
In C:
for(int i = 0; i < N; i++)
c[i] = a[i] + b[i];
In CUDA:
__global__ add(int *c, int *a, int*b, int N)
{
int pos = (threadIdx.x + blockIdx.x)
for(; i < N; pos +=blockDim.x)
c[pos] = a[pos] + b[pos];
}
In CUDA you basically took each for iteration and assigned to each thread,
1) threadIdx.x + blockIdx.x*blockDim.x;
Each block has an ID
from 0
to N-1
(N the number maximum of blocks) and each block has a 'X'
number of threads with an ID
from 0
to X-1
.
ID
and the block ID
which the thread is in; the blockDim.x is the number of threads that a block has.So if you have 2 blocks each one with 10
threads and N=40
, the:
Thread 0 Block 0 will execute pos 0
Thread 1 Block 0 will execute pos 1
...
Thread 9 Block 0 will execute pos 9
Thread 0 Block 1 will execute pos 10
....
Thread 9 Block 1 will execute pos 19
Thread 0 Block 0 will execute pos 20
...
Thread 0 Block 1 will execute pos 30
Thread 9 Block 1 will execute pos 39
Looking at your current code, I have made this draft of what your code could look like in CUDA:
__global__ hash (float *largeFloatingPointArray, int *dictionary)
// You can turn the dictionary in one array of int
// here each position will represent the float
// Since x = 0f; x < 100f; x += 0.0001f
// you can associate each x to different position
// in the dictionary:
// pos 0 have the same meaning as 0f;
// pos 1 means float 0.0001f
// pos 2 means float 0.0002f ect.
// Then you use the int of each position
// to count how many times that "float" had appeared
int x = blockIdx.x; // Each block will take a different x to work
float y;
while( x < 1000000) // x < 100f (for incremental step of 0.0001f)
{
int noOfOccurrences = 0;
float z = converting_int_to_float(x); // This function will convert the x to the
// float like you use (x / 0.0001)
// each thread of each block
// will takes the y from the array of largeFloatingPointArray
for(j = threadIdx.x; j < largeFloatingPointArraySize; j += blockDim.x)
{
y = largeFloatingPointArray[j];
if (z == y)
{
noOfOccurrences++;
}
}
if(threadIdx.x == 0) // Thread master will update the values
atomicAdd(&dictionary[x], noOfOccurrences);
__syncthreads();
}
You have to use atomicAdd
because different threads from different blocks may write/read noOfOccurrences
concurrently, so you have to ensure mutual exclusion.
This is just one approach; you can even assign the iterations of the outer loop to the threads instead of the blocks.
Tutorials
The Dr Dobbs Journal series CUDA: Supercomputing for the masses by Rob Farmer is excellent and covers just about everything in its fourteen installments. It also starts rather gently and is therefore fairly beginner-friendly.
and anothers:
Take a look on the last item, you will find many link to learn CUDA.
OpenCL: OpenCL Tutorials | MacResearch