I know a little C and now I'm taking a look at C++. I'm used to char arrays for dealing with C strings, but while I look at C++ code I see there are examples using both string type and char arrays:
#include <iostream>
#include <string>
using namespace std;
int main () {
string mystr;
cout << "What's your name? ";
getline (cin, mystr);
cout << "Hello " << mystr << ".\n";
cout << "What is your favorite team? ";
getline (cin, mystr);
cout << "I like " << mystr << " too!\n";
return 0;
}
and
#include <iostream>
using namespace std;
int main () {
char name[256], title[256];
cout << "Enter your name: ";
cin.getline (name,256);
cout << "Enter your favourite movie: ";
cin.getline (title,256);
cout << name << "'s favourite movie is " << title;
return 0;
}
(both examples from http://www.cplusplus.com)
I suppose this is a widely asked and answered (obvious?) question, but it would be nice if someone could tell me what's exactly the difference between that two ways for dealing with strings in C++ (performance, API integration, the way each one is better, ...).
Thank you.
A char array is just that - an array of characters:
A string is a class that contains a char array, but automatically manages it for you. Most string implementations have a built-in array of 16 characters (so short strings don't fragment the heap) and use the heap for longer strings.
You can access a string's char array like this:
std::string myString = "Hello World";
const char *myStringChars = myString.c_str();
C++ strings can contain embedded \0 characters, know their length without counting, are faster than heap-allocated char arrays for short texts and protect you from buffer overruns. Plus they're more readable and easier to use.
However, C++ strings are not (very) suitable for usage across DLL boundaries, because this would require any user of such a DLL function to make sure he's using the exact same compiler and C++ runtime implementation, lest he risk his string class behaving differently.
Normally, a string class would also release its heap memory on the calling heap, so it will only be able to free memory again if you're using a shared (.dll or .so) version of the runtime.
In short: use C++ strings in all your internal functions and methods. If you ever write a .dll or .so, use C strings in your public (dll/so-exposed) functions.