I am trying to create a limited thread pool class using boost::asio. But I am stuck at one point can some one help me.
The only problem is the place where I should decrease counter?
code does not work as expected.
the problem is I don't know when my thread will finish execution and how I will come to know that it has return to pool
#include <boost/asio.hpp>
#include <iostream>
#include <boost/thread/thread.hpp>
#include <boost/bind.hpp>
#include <boost/thread/mutex.hpp>
#include <stack>
using namespace std;
using namespace boost;
class ThreadPool
{
static int count;
int NoOfThread;
thread_group grp;
mutex mutex_;
asio::io_service io_service;
int counter;
stack<thread*> thStk ;
public:
ThreadPool(int num)
{
NoOfThread = num;
counter = 0;
mutex::scoped_lock lock(mutex_);
if(count == 0)
count++;
else
return;
for(int i=0 ; i<num ; ++i)
{
thStk.push(grp.create_thread(boost::bind(&asio::io_service::run, &io_service)));
}
}
~ThreadPool()
{
io_service.stop();
grp.join_all();
}
thread* getThread()
{
if(counter > NoOfThread)
{
cout<<"run out of threads \n";
return NULL;
}
counter++;
thread* ptr = thStk.top();
thStk.pop();
return ptr;
}
};
int ThreadPool::count = 0;
struct callable
{
void operator()()
{
cout<<"some task for thread \n";
}
};
int main( int argc, char * argv[] )
{
callable x;
ThreadPool pool(10);
thread* p = pool.getThread();
cout<<p->get_id();
//how i can assign some function to thread pointer ?
//how i can return thread pointer after work done so i can add
//it back to stack?
return 0;
}
In short, you need to wrap the user's provided task with another function that will:
I may not be understanding all the requirements for this thread pool. Thus, for clarity, here is an explicit list as to what I believe are the requirements:
Before I provide an implementation, there are a few key points I would like to stress:
io_service::run()
, and callable types are posted into the event queue, such as from io_service::post()
. io_service::run()
returns if there is no work pending in the io_service
, the io_service
is stopped, or an exception is thrown from a handler that the thread was running. To prevent io_serivce::run()
from returning when there is no unfinished work, the io_service::work
class can be used.object()
syntax) instead of requiring a type (i.e. task must inherit from process
), provides more flexibility to the user. It allows the user to supply a task as a function pointer or a type providing a nullary operator()
.Implementation using boost::asio
:
#include <boost/asio.hpp>
#include <boost/thread.hpp>
class thread_pool
{
private:
boost::asio::io_service io_service_;
boost::asio::io_service::work work_;
boost::thread_group threads_;
std::size_t available_;
boost::mutex mutex_;
public:
/// @brief Constructor.
thread_pool( std::size_t pool_size )
: work_( io_service_ ),
available_( pool_size )
{
for ( std::size_t i = 0; i < pool_size; ++i )
{
threads_.create_thread( boost::bind( &boost::asio::io_service::run,
&io_service_ ) );
}
}
/// @brief Destructor.
~thread_pool()
{
// Force all threads to return from io_service::run().
io_service_.stop();
// Suppress all exceptions.
try
{
threads_.join_all();
}
catch ( const std::exception& ) {}
}
/// @brief Adds a task to the thread pool if a thread is currently available.
template < typename Task >
void run_task( Task task )
{
boost::unique_lock< boost::mutex > lock( mutex_ );
// If no threads are available, then return.
if ( 0 == available_ ) return;
// Decrement count, indicating thread is no longer available.
--available_;
// Post a wrapped task into the queue.
io_service_.post( boost::bind( &thread_pool::wrap_task, this,
boost::function< void() >( task ) ) );
}
private:
/// @brief Wrap a task so that the available count can be increased once
/// the user provided task has completed.
void wrap_task( boost::function< void() > task )
{
// Run the user supplied task.
try
{
task();
}
// Suppress all exceptions.
catch ( const std::exception& ) {}
// Task has finished, so increment count of available threads.
boost::unique_lock< boost::mutex > lock( mutex_ );
++available_;
}
};
A few comments about the implementation:
boost::thread_interrupted
, then std::terminate()
is called. This is the the result of Boost.Thread's exceptions in thread functions behavior. It is also worth reading Boost.Asio's effect of exceptions thrown from handlers.task
via boost::bind
, then the nested boost::bind
will fail to compile. One of the following options is required:
task
created by boost::bind
.boost::bind
so that boost::protect
could be used, as boost::protect
only functions properly on certain function objects.task
object indirectly. I opted to use boost::function
for readability at the cost of losing the exact type. boost::tuple
, while slightly less readable, could also be used to preserve the exact type, as seen in the Boost.Asio's serialization example.Application code can now use the thread_pool
type non-intrusively:
void work() {};
struct worker
{
void operator()() {};
};
void more_work( int ) {};
int main()
{
thread_pool pool( 2 );
pool.run_task( work ); // Function pointer.
pool.run_task( worker() ); // Callable object.
pool.run_task( boost::bind( more_work, 5 ) ); // Callable object.
}
The thread_pool
could be created without Boost.Asio, and may be slightly easier for maintainers, as they no longer need to know about Boost.Asio
behaviors, such as when does io_service::run()
return, and what is the io_service::work
object:
#include <queue>
#include <boost/bind.hpp>
#include <boost/thread.hpp>
class thread_pool
{
private:
std::queue< boost::function< void() > > tasks_;
boost::thread_group threads_;
std::size_t available_;
boost::mutex mutex_;
boost::condition_variable condition_;
bool running_;
public:
/// @brief Constructor.
thread_pool( std::size_t pool_size )
: available_( pool_size ),
running_( true )
{
for ( std::size_t i = 0; i < pool_size; ++i )
{
threads_.create_thread( boost::bind( &thread_pool::pool_main, this ) ) ;
}
}
/// @brief Destructor.
~thread_pool()
{
// Set running flag to false then notify all threads.
{
boost::unique_lock< boost::mutex > lock( mutex_ );
running_ = false;
condition_.notify_all();
}
try
{
threads_.join_all();
}
// Suppress all exceptions.
catch ( const std::exception& ) {}
}
/// @brief Add task to the thread pool if a thread is currently available.
template < typename Task >
void run_task( Task task )
{
boost::unique_lock< boost::mutex > lock( mutex_ );
// If no threads are available, then return.
if ( 0 == available_ ) return;
// Decrement count, indicating thread is no longer available.
--available_;
// Set task and signal condition variable so that a worker thread will
// wake up andl use the task.
tasks_.push( boost::function< void() >( task ) );
condition_.notify_one();
}
private:
/// @brief Entry point for pool threads.
void pool_main()
{
while( running_ )
{
// Wait on condition variable while the task is empty and the pool is
// still running.
boost::unique_lock< boost::mutex > lock( mutex_ );
while ( tasks_.empty() && running_ )
{
condition_.wait( lock );
}
// If pool is no longer running, break out.
if ( !running_ ) break;
// Copy task locally and remove from the queue. This is done within
// its own scope so that the task object is destructed immediately
// after running the task. This is useful in the event that the
// function contains shared_ptr arguments bound via bind.
{
boost::function< void() > task = tasks_.front();
tasks_.pop();
lock.unlock();
// Run the task.
try
{
task();
}
// Suppress all exceptions.
catch ( const std::exception& ) {}
}
// Task has finished, so increment count of available threads.
lock.lock();
++available_;
} // while running_
}
};