So I have some type X
:
typedef ... X;
and a template function f
:
class <typename T>
void f(X& x_out, const T& arg_in);
and then a function g
:
void g(const X* x_array, size_t x_array_size);
I need to write a variadic template function h
that does this:
template<typename... Args>
void h(Args... args)
{
constexpr size_t nargs = sizeof...(args); // get number of args
X x_array[nargs]; // create X array of that size
for (int i = 0; i < nargs; i++) // foreach arg
f(x_array[i], args[i]); // call f (doesn't work)
g(x_array, nargs); // call g with x_array
}
The reason it doesn't work is because you can't subscript args like that at runtime.
What is the best technique to replace the middle part of h
?
And the winner is Xeo:
template<class T> X fv(const T& t) { X x; f(x,t); return x; }
template<class... Args>
void h(Args... args)
{
X x_array[] = { fv(args)... };
g(x_array, sizeof...(Args));
}
(Actually in my specific case I can rewrite f to return x by value rather than as an out parameter, so I don't even need fv above)
You could refactor or wrap f
to return a new X
instead of having it passed, since this would play pack expansion into the hand and make the function really concise:
template<class T>
X fw(T const& t){ X x; f(x, t); return x; }
template<class... Args>
void h(Args... args){
X xs[] = { fw(args)... };
g(xs, sizeof...(Args));
}
And if you could change g
to just accept an std::initializer_list
, it would get even more concise:
template<class... Args>
void h(Args... args){
g({f(args)...});
}
Live example. Or (maybe better), you could also provide just a wrapper g
that forwards to the real g
:
void g(X const*, unsigned){}
void g(std::initializer_list<X> const& xs){ g(xs.begin(), xs.size()); }
template<class... Args>
void h(Args... args){
g({f(args)...});
}
Live example.
Edit: Another option is using a temporary array:
template<class T>
using Alias = T;
template<class T>
T& as_lvalue(T&& v){ return v; }
template<class... Args>
void h(Args... args){
g(as_lvalue(Alias<X[]>{f(args)...}), sizeof...(Args));
}
Live example. Note that the as_lvalue
function is dangerous, the array still only lives until the end of the full expression (in this case g
), so be cautious when using it. The Alias
is needed since just X[]{ ... }
is not allowed due to the language grammar.
If all of that's not possible, you'll need recursion to access all elements of the args
pack.
#include <tuple>
template<unsigned> struct uint_{}; // compile-time integer for "iteration"
template<unsigned N, class Tuple>
void h_helper(X (&)[N], Tuple const&, uint_<N>){}
template<unsigned N, class Tuple, unsigned I = 0>
void h_helper(X (&xs)[N], Tuple const& args, uint_<I> = {}){
f(xs[I], std::get<I>(args));
h_helper(xs, args, uint_<I+1>());
}
template<typename... Args>
void h(Args... args)
{
static constexpr unsigned nargs = sizeof...(Args);
X xs[nargs];
h_helper(xs, std::tie(args...));
g(xs, nargs);
}
Edit: Inspired by ecatmur's comment, I employed the indices trick to make it work with just pack expansion and with f
and g
as-is, without altering them.
template<unsigned... Indices>
struct indices{
using next = indices<Indices..., sizeof...(Indices)>;
};
template<unsigned N>
struct build_indices{
using type = typename build_indices<N-1>::type::next;
};
template <>
struct build_indices<0>{
using type = indices<>;
};
template<unsigned N>
using IndicesFor = typename build_indices<N>::type;
template<unsigned N, unsigned... Is, class... Args>
void f_them_all(X (&xs)[N], indices<Is...>, Args... args){
int unused[] = {(f(xs[Is], args), 1)...};
(void)unused;
}
template<class... Args>
void h(Args... args){
static constexpr unsigned nargs = sizeof...(Args);
X xs[nargs];
f_them_all(xs, IndicesFor<nargs>(), args...);
g(xs, nargs);
}