What I want to do is change how a C# method executes when it is called, so that I can write something like this:
[Distributed]
public DTask<bool> Solve(int n, DEvent<bool> callback)
{
for (int m = 2; m < n - 1; m += 1)
if (m % n == 0)
return false;
return true;
}
At run-time, I need to be able to analyse methods that have the Distributed attribute (which I already can do) and then insert code before the body of the function executes and after the function returns. More importantly, I need to be able to do it without modifying code where Solve is called or at the start of the function (at compile time; doing so at run-time is the objective).
At the moment I have attempted this bit of code (assume t is the type that Solve is stored in, and m is a MethodInfo of Solve):
private void WrapMethod(Type t, MethodInfo m)
{
// Generate ILasm for delegate.
byte[] il = typeof(Dpm).GetMethod("ReplacedSolve").GetMethodBody().GetILAsByteArray();
// Pin the bytes in the garbage collection.
GCHandle h = GCHandle.Alloc((object)il, GCHandleType.Pinned);
IntPtr addr = h.AddrOfPinnedObject();
int size = il.Length;
// Swap the method.
MethodRental.SwapMethodBody(t, m.MetadataToken, addr, size, MethodRental.JitImmediate);
}
public DTask<bool> ReplacedSolve(int n, DEvent<bool> callback)
{
Console.WriteLine("This was executed instead!");
return true;
}
However, MethodRental.SwapMethodBody only works on dynamic modules; not those that have already been compiled and stored in the assembly.
So I'm looking for a way to effectively do SwapMethodBody on a method that is already stored in a loaded and executing assembly.
Note, it is not an issue if I have to completely copy the method into a dynamic module, but in this case I need to find a way to copy across the IL as well as update all of the calls to Solve() such that they would point to the new copy.
Disclosure: Harmony is a library that was written and is maintained by me, the author of this post.
Harmony 2 is an open source library (MIT license) designed to replace, decorate or modify existing C# methods of any kind during runtime. It main focus is games and plugins written in Mono or .NET. It takes care of multiple changes to the same method - they accumulate instead of overwrite each other.
It creates dynamic replacement methods for every original method and emits code to them that calls custom methods at the start and end. It also allows you to write filters to process the original IL code and custom exception handlers which allows for more detailed manipulation of the original method.
To complete the process, it writes a simple assembler jump into the trampoline of the original method that points to the assembler generated from compiling the dynamic method. This works for 32/64Bit on Windows, macOS and any Linux that Mono supports.
Documentation can be found here.
(Source)
Original Code
public class SomeGameClass
{
private bool isRunning;
private int counter;
private int DoSomething()
{
if (isRunning)
{
counter++;
return counter * 10;
}
}
}
Patching with Harmony annotations
using SomeGame;
using HarmonyLib;
public class MyPatcher
{
// make sure DoPatching() is called at start either by
// the mod loader or by your injector
public static void DoPatching()
{
var harmony = new Harmony("com.example.patch");
harmony.PatchAll();
}
}
[HarmonyPatch(typeof(SomeGameClass))]
[HarmonyPatch("DoSomething")]
class Patch01
{
static FieldRef<SomeGameClass,bool> isRunningRef =
AccessTools.FieldRefAccess<SomeGameClass, bool>("isRunning");
static bool Prefix(SomeGameClass __instance, ref int ___counter)
{
isRunningRef(__instance) = true;
if (___counter > 100)
return false;
___counter = 0;
return true;
}
static void Postfix(ref int __result)
{
__result *= 2;
}
}
Alternatively, manual patching with reflection
using SomeGame;
using HarmonyLib;
public class MyPatcher
{
// make sure DoPatching() is called at start either by
// the mod loader or by your injector
public static void DoPatching()
{
var harmony = new Harmony("com.example.patch");
var mOriginal = typeof(SomeGameClass).GetMethod("DoSomething", BindingFlags.Instance | BindingFlags.NonPublic);
var mPrefix = typeof(MyPatcher).GetMethod("MyPrefix", BindingFlags.Static | BindingFlags.Public);
var mPostfix = typeof(MyPatcher).GetMethod("MyPostfix", BindingFlags.Static | BindingFlags.Public);
// add null checks here
harmony.Patch(mOriginal, new HarmonyMethod(mPrefix), new HarmonyMethod(mPostfix));
}
public static void MyPrefix()
{
// ...
}
public static void MyPostfix()
{
// ...
}
}