List all possible combinations of k integers between 1...n (n choose k)

Asaf R picture Asaf R · Feb 14, 2009 · Viewed 15k times · Source

Out of no particular reason I decided to look for an algorithm that produces all possible choices of k integers between 1...n, where the order amongst the k integer doesn't matter (the n choose k thingy).

From the exact same reason, which is no reason at all, I also implemented it in C#. My question is:

Do you see any mistake in my algorithm or code? And, more importantly, can you suggest a better algorithm?

Please pay more attention to the algorithm than the code itself. It's not the prettiest code I've ever written, although do tell if you see an error.

EDIT: Alogirthm explained -

  • We hold k indices.
  • This creates k nested for loops, where loop i's index is indices[i].
  • It simulates k for loops where indices[i+1] belongs to a loop nested within the loop of indices[i].
  • indices[i] runs from indices[i - 1] + 1 to n - k + i + 1.

CODE:

public class AllPossibleCombination
{
    int n, k;
    int[] indices;
    List<int[]> combinations = null;

    public AllPossibleCombination(int n_, int k_)
    {
        if (n_ <= 0)
        {
            throw new ArgumentException("n_ must be in N+");
        }
        if (k_ <= 0)
        {
            throw new ArgumentException("k_ must be in N+");
        }
        if (k_ > n_)
        {
            throw new ArgumentException("k_ can be at most n_");
        }

        n = n_;
        k = k_;
        indices = new int[k];
        indices[0] = 1;
    }

    /// <summary>
    /// Returns all possible k combination of 0..n-1
    /// </summary>
    /// <returns></returns>
    public List<int[]> GetCombinations()
    {
        if (combinations == null)
        {
            combinations = new List<int[]>();
            Iterate(0);
        }
        return combinations;
    }

    private void Iterate(int ii)
    {
        //
        // Initialize
        //
        if (ii > 0)
        {
            indices[ii] = indices[ii - 1] + 1;
        }

        for (; indices[ii] <= (n - k + ii + 1); indices[ii]++)
        {
            if (ii < k - 1)
            {
                Iterate(ii + 1);
            }
            else
            {
                int[] combination = new int[k];
                indices.CopyTo(combination, 0);
                combinations.Add(combination);
            }
        }
    }
}

I apologize for the long question, it might be fit for a blog post, but I do want the community's opinion here.

Thanks,
Asaf

Answer

Matthieu N. picture Matthieu N. · Oct 25, 2009

In C++ given the following routine:

template <typename Iterator>
inline bool next_combination(const Iterator first, Iterator k, const Iterator last)
{
   /* Credits: Thomas Draper */
   if ((first == last) || (first == k) || (last == k))
      return false;
   Iterator itr1 = first;
   Iterator itr2 = last;
   ++itr1;
   if (last == itr1)
      return false;
   itr1 = last;
   --itr1;
   itr1 = k;
   --itr2;
   while (first != itr1)
   {
      if (*--itr1 < *itr2)
      {
         Iterator j = k;
         while (!(*itr1 < *j)) ++j;
         std::iter_swap(itr1,j);
         ++itr1;
         ++j;
         itr2 = k;
         std::rotate(itr1,j,last);
         while (last != j)
         {
            ++j;
            ++itr2;
         }
         std::rotate(k,itr2,last);
         return true;
      }
   }
   std::rotate(first,k,last);
   return false;
}

You can then proceed to do the following:

std::string s = "123456789";
std::size_t k = 3;
do
{
   std::cout << std::string(s.begin(),s.begin() + k) << std::endl;
}
while(next_combination(s.begin(),s.begin() + k,s.end()));